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Abstract

Abstract

Finding the canonical metrics on complex manifolds is a natural problem, dating
back to Calabi. The constant scalar curvature Kéhler (cscK) metric is a good candidate in
the case of polarized manifold. Since the 80s, Yau, Tian, Donaldson and others proposed
the existence of the canonical metric is equivalent to an algebro-geometric notion, the
so-called K-stability. The problem is widely open in general. There have been consid-
erable strides on these ideas for the Fano case in recent years. Chen-Donaldson-Sun and
Tian independently proved that K-polystability of Fano manifolds implies the existence
of positive Kdhler-Einstein metrics.

In the algebraic side, Fujita and Li re-interpreted K-stability of Fano varieties in
terms of valuations. This is the so-called Fujita-Li criterion. People study K-stability of
Fano varieties from the viewpoint of birational geometry. An almost complete theory of
K-stability of Fano varieties is established. The Fujita-Li criterion for K-stability of Fano
varieties has played an essential role in this theory. Thus developing the valuative criterion
of K-stability of polarized varieties is necessary. Dervan-Legendre first considered the
valuative stability of polarized varieties and showed a partial equivalence.

A basic question about uniform stability is whether it is preserved under small per-
turbations of the polarization or not. This question is motivated by a classical result of
LeBrun-Simanca, in which they established openness results for perturbations of cscK
metrics. We give an affirmative answer to the above question for uniformly valuative sta-
bility and show that the uniformly valuative stability locus is an open subcone of the ample
cone of projective varieties. Our definition is stronger than that of Dervan-Legendre. We
also define a uniformly valuative stability threshold, which generalizes the 6-invariant of
Fujita-Odaka, and prove the continuity of this invariant.

As applications of valuative stability, we study the valuative J-stability for Donald-
son’s J-equation and show a direction of valuative criterion of J-equation. In addition, we
obtain an upper bound of the volume of polarized toric variety. Our upper bound does not

need any assumption about the Ricci curvature of underlying manifolds.

Keywords: K-stability; Valuative stability; f-invariant; Valuative J-stability; Upper

bound of the volume
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List of Symbols and Acronyms

List of Symbols and Acronyms

t The coordinate of R

T The coordinate of C

r The parameter of test curves

0] The fixed Kdhler metric

10) The function in the Archimedean side

H The space of Kéhler potential in the class [@]

Psh w-plurisubharmonic functions

el w-plurisubharmonic functions of the finite energy

wy ‘= +dd°¢  The Kahler form of ¢

D The plurisubharmonic path in Psh or the corresponding function on
XxC

Q@ The function in the non-Archimedean side

(X, L) The test configuration of (X, L)

We work throughout over the complex number C. A variety is always assumed to
be a connected, reduced, separated and of finite type scheme over Spec C. Unless we
say specifically, in this thesis, fix all divisors as Cartier divisors. For the convenience of

writing, we do not distinguish between divisors and line bundles.



Chapter 1  Introduction

Chapter 1 Introduction

1.1 CscK problem

Finding the canonical metric on Kdhler manifolds is central problem in Kéhler geom-
etry. The first result of this form is the classical uniformization theorem in dimension 1.
In higher dimension, Kéhler-Einstein metrics, constant scalar curvature (cscK for short)
metrics, extremal Kdhler metrics are good candidates. In this thesis, we focus on the
cscK metrics of polarized manifolds. In particular, the Kdhler-Einstein metric is the cscK
metric.

For Kéhler-Einstein metrics, when the first Chern class is negative or zero, Yau [1]
(also Aubin [2] in the negative case) showed that the compact Kéhler manifold admits
a unique Kéhler-Einstein metric, solving the famous conjecture of Calabi by using the
continuity method.

The case of positive first Chern class is very difficult. Some mathematicians con-
structed obstructions of existence, for example Matsushima [3], Futaki [4] etc. The ob-
structions of Matsushima are that Kéhler-Einstein manifolds have reductive automor-
phism group. But there exists some trivial example of Fano manifolds with non-reductive
automorphism group. Futaki constructed an integral invariant, the so-called Futaki invari-
ant. By definition of Futaki invariant, Kihler-Einstein manifolds have vanishing Futaki
invariant.

Yau [5] conjectured that in this case the existence of a Kéhler-Einstein metric is
related to the stability of the underlying manifold in the sense of Mumford’s geometric
invariant theory. Tian made great progress towards understanding this (see [6]) by giving
an analytic condition which is equivalent to the existence of the Kadhler-Einstein metric.
This condition is the properness of the Ding functional, which is an energy functional on
the Kéhler class whose critical points are Kidhler-Einstein metrics. In [6], Tian also defined
K-stability of Fano manifold based on the generalized Futaki invariant of Ding-Tian [7]
and conjectured that it is equivalent to the existence of Kéhler-Einstein metrics.

In [8], Donaldson showed that the scalar curvature arises as a moment map for a
suitable infinite dimensional symplectic action (see also Fujiki [9]), the so-called Fujiki-
Donaldson picture. By Kempf-Ness Theorem, this explained on a formal level why the

existence of a Kdhler-Einstein metric, or more generally a cscK metric, is related to the
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stability of the variety.

In particular, Donaldson [10] generalized Tian’s definition of K-stability by giving an
algebro-geometric definition of the Futaki invariant, and conjectured that it is equivalent
to the existence of a cscK metric. This is the so-called Yau-Tian-Donaldson (YTD for
short) conjecture. The notion of K-stability of a polarised variety has played an important
role in algebraic geometry, especially Fano varieties, in recent years.

The YTD conjecture is widely open in general. There have been considerable strides
on these ideas for the Fano case in recent years. Chen-Donaldson-Sun [11] and Tian
[12] independently proved that K-polystability implies the existence of Kdhler-Einstein
metrics on Fano manifolds, solving this conjecture in the Fano case (also see [13], [14],
[15], [16] for other different methods).

Unfortunately, examples in [17] showed that positivity of the Donaldson-Futaki in-
variant for algebraic test-configurations may not be enough to ensure the existence of a
cscK metric. A stronger notion, the so-called uniform K-stability, is introduced by the
thesis [18] and deeply developed in [19] and [20], which becomes a new candidate for
the stability criterion of the existence of a cscK metric. When the automorphism group
of a manifold is discrete, the uniform YTD conjecture states that uniform K-stability is
equivalent to the existence of a cscK metric. Very recently, Li [21] proved the existence
of cscK metrics under the condition of uniform K-stability for model filtration, which is
stronger than the original uniform K-stability. Moreover, his approach also holds when

the automorphism group is non-discrete.

1.2 Valuative stability

In the algebraic side, the theory has achieved substantial progress. The main break-
through is due to Fujita [22] (also Fujita and Odaka [23]) and Li [24], which re-interprets
K-stability in terms of valuations by the algebraic invariant, the so-called 6-invariant [23]
or f-invariant [22], [24] (see Section 5.1). One can test K-stability of a Fano variety by
computing its é-invariant or f-invariant. This is the so-called Fujita-Li criterion (see
Theorem 5.1).

People study K-stability of Fano varieties from the viewpoint of birational geometry.
An almost complete theory of K-stability of Fano varieties is established. From this pow-
erful theory, one can construct a desirable moduli space of K-stable Fano varieties, the

so-called K-moduli space. There are many important works along these lines, due to Xu,
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Liu, Zhuang, Blum, etc. (see [25], [26], [27], [28], [29], [30], etc.). We refer the reader
to an excellent survey [31] for the algebraic theory of K-stability of Fano varieties. Very
recently, Liu-Xu-Zhuang [32] proved that the K-moduli space is proper by solving two
profound and challenging conjectures, the so-called Higher Rank Finite Generation con-
jecture and Optimal Destabilization conjecture. As an application of those conjectures,
they also show that K-stability is equivalent to uniform K-stability for a log Fano pair
with the discrete automorphism group. Moreover, their argument also holds for the non-
discrete automorphism group. The Fujita-Li criterion for K-stability of Fano varieties has
played an essential role in all of these developments.

To study K-stability of polarised varieties, the next step is to develop the Fujita-
Li criterion in the polarised case. The original definition of K-stability involves C*-
degenerations of a polarised variety, the so-called test configurations. Donaldson [10] as-
sociates a numerical invariant to each test configuration, the so-called Donaldson-Futaki
invariant. K-stability means that this invariant is always positive. By works of Bouck-
som, Jonsson, etc. (see [19], [33]), we can identify a test configuration with a finitely
generated Z-filtration on the section ring of the polarization.

For any valuation, one can associate a filtration to this valuation. When this filtration
is finitely generated, such a valuation is called a dreamy valuation. A valuation is called
a divisorial valuation if it is induced by a prime divisor over the variety (see Chapter 5
for the definition). A divisor is called a dreamy divisor if the corresponding divisorial
valuation is dreamy. Dervan and Legendre [34] define a new f-invariant for polarised
varieties, which generalizes Fujita’s original f-invariant, by computing the Donaldson-
Futaki invariant of the test configuration associated with a dreamy divisor. They showed
that K-stability over integral test configurations is equivalent to valuative stability over
dreamy divisors. Here an integral test configuration means that its central fiber is integral.

It gives an expectation to establish the Fujita-Li criterion in the polarized case.

1.3 Main results

A basic question about uniform stability is whether it is preserved under small per-
turbations of the polarization or not. This question is motivated by a classical result of
LeBrun-Simanca [35], in which they established openness results for perturbations of
cscK metrics. Fujita [36] proved the openness of uniform K-stability for the log canonical

and log anti-canonical polarization. Note that Fujita’s result requires that the base variety
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can have bad singularities, the so-called demi-normal pair (see [37] or [38]). Zhang [39]
proved that the valuative stability threshold (6-invariant) is continuous on the big cone
of Fano manifolds. Thus, the openness of uniformly valuative stability holds for Fano
manifolds.

In this thesis, we consider the openness of uniformly valuative stability for general
projective varieties. This gives an affirmative answer to the above question for uniformly
valuative stability. Note that our definition of uniformly valuative stability is stronger
than that given by Dervan and Legendre in [34], see Definition 5.3 and Remark 5.2. Our
main theorem is
Theorem 1.1 ([40] see Theorem 5.3). For anormal projective variety X, the uniformly

valuative stability locus
UVs := {[L] € Amp(X) | (X, L) is uniformly valuatively stable} (1.1)

is an open subcone of the ample cone Amp(X).

Together with LeBrun-Simanca’s openness, our result fits the expectation of YTD
conjecture.

A main difficulty of Theorem 1.1 is to control the difference of the derivative part
in the expression of f-invariant for two nearby ample divisors. It is hard to control the
difference for all prime divisors in general. In addition, the log discrepancy has no control
generally. By considering the derivative part of f-invariant together with the log discrep-
ancy, we obtain a partial control of f-invariant (see Theorem 6.1), which is enough to
show our main theorem.

As an immediate application of the main theorem, we obtain
Corollary 1.1 ([40] see Theorem 6.2). For anormal projective variety X, the uniformly

valuative stability threshold
Amp(X)> L~ (L) eR (1.2)

is continuous on the ample cone Amp(X) (see Definition 6.2 for {(L)).

The invariant { is motivated by é-invariant since 6 — 1 can be viewed as the sta-
bility threshold (in the sense of Definition 6.2) of the original f-invariant. Corollary 1.1
gives a similar result with Zhang [39] for projective varieties. According to the expres-
sion of f-invariant, we do not have a canonical formulation to define its corresponding
o-invariant for polarised varieties. Studying the invariant ¢ is a good candidate to test

valuative stability.
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The definition of cscK metrics does not need a polarization. In [41] and [42], they
independently defined K-stability for the transcendental Kdhler classes. It is natural to
extend the valuative stability to any Kéhler class of compact Kéhler manifolds (see Defi-
nition 7.1).

Due to some well-known results about analytic geometry, it is straightforward to see
that our argument for the algebraic class can also work for the Kdhler class on projective
manifolds. We state it as follows,

Theorem 1.2 ([40] see Theorem 7.3). For a projective manifold X, the uniformly

valuative stability locus
UVs := {a € K | (X, a) is uniformly valuatively stable} (1.3)

is an open subcone of the Kdhler cone K.

Another topic of this thesis is the J-equation, which is introduced by Donaldson [43]
from the point-view of moment maps, as well as by Chen [44] in the study of the Mabuchi
K-energy whose critical point is the cscK metric. To state the equation, let (X, ®) be a
compact Kdhler manifold of dimension n, and let y be another Kidhler metric on X which

is not related to w. The J-equation is the elliptic equation
o, X = C, (1.4)

where wy = 0 + dd®¢ is a Kéhler form and c is a constant, only depending on the classes

of [w] and [ 1],

J n)(/\a)"_lch o". (1.5)
X X

The J-equation can be written as the critical point of a functional on the space of Kéhler
potentials, denoted by J,. When y = —Ric(w), then the functional J, is the energy part
of K-energy. Thus, the J-equation appears naturally in the study of the cscK problem.

Based on the fact that the J-equation has a moment map description, Lejmi and Széke-
lyhidi [45] introduced the analogies of K-stability and slope stability for the J-equation,
the so-called J-stability and slope J-stability (see Definition 7.2).

There are many interesting works for the J-equation including [45], [46], [47], [48],
[48] etc. Recently, Chen [49] showed the equivalence between the existence of the J-
equation and uniform J-stability. He also proved a equivalent numerical condition for the

existence of the solution of the J-equation, which is conjectured in [45].
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The numerical condition seems to be difficult to check since it involves all analytic
subvarieties of the underlying Kéhler manifold. Thus, we ask whether there exists an
equivalent condition involving just subvarieties of codimension 1 to test the solvability
of the J-equation. Motivated by Fujita-Li criterion, we study the J-stability in terms of
divisorial valuations to test the existence of J-equations. This seems to be more natural
from the view point of birational geometry.

Parallelling the Fujita’s f-invariant, We define a invariant jz(-) (see Section 7.2).
Thus, we also define the J-stability threshold, denoted by y; (see Section 7.2), similar
with é-invariant. We expect that the y invariant will play a similar role to é-invariant.
We can show a direction of the valuative criterion.

Proposition 1.1 (see Proposition 7.1). If the polarized manifold (X, L) has a unique

solution of the J-equation (7.18), then (X, L) is uniformly valuatively J-stable, i.e.,

ra(L) > c. (1.6)

Finally, we give an application of valuative stability about the upper bound of the
volume of polarized varieties.

The upper bound of volumes of Kéhler-Einstein Fano manifolds is given by [50]
under a condition about the C*-action of underlying manifolds. Their approach is analytic
and based on the Moser-Trudinger type inequalities. Fujita [51] removed the Berman-
Berndtsson’s condition and showed the same upper bound of volumes for Kéhler-Einstein
manifolds by using the purely algebraic method in terms of valuative stability. Later,
Zhang [52] showed the same bound of volumes replaced the Kéahler-Einstein condition
by that the Ricci curvature has positive lower bound. The author of [53] generalized
Fujita’s result to singular Fano varieties.

As an application of valuative stability of polarized varieties, we obtain an upper
bound of the volume of polarized toric varieties. It is well-known that the polarized toric

variety is determined by the lattice polytope P;
P ={me Mg | (m,u,) > —a,forall pe X(1)}. (1.7)

Theorem 1.3 (see Theorem 7.6). Let (X, L) be a polarized toric variety of dimension

n. Assume (X, L) is K-semistable. Then we have
n n
V Vol(L) < mgx a,(1+ m,u(L)rL(F)) (1.8)

6
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where F is an exceptional divisor of blowup at a smooth point. See Section 5.2 for the

definitions of p(L) and 7 (F).

Note that our theorem does not need any assumption about the Ricci curvature of un-

derlying manifolds. It generalizes the upper bound of the volume of [50] in the toric case.

To facilitate access to the individual topics, the sections are rendered as self-

contained as possible.

The thesis is organized as follows.
In Chapter 2, we introduce some background about Kihler geometry and pluripo-
tential theory.
In Chapter 3, we recall some classical theory about the volume of big divisors and
the positive intersection product.
In Chapter 4, we review the definition of K-stability and non-Archimedean pluripo-
tential theory, and introduce the connection between them.
In Chapter 5, we compare the valuative stability of Fano varieties and polarized
varities.
In Chapter 6, we give the proof of Theorem 1.1 and Corollary 1.1.
In Chapter 7, we provide some applications of valuative stability, including valua-
tive stability for the transcendental Kéhler class, valuative J-stability and the upper

bound of the volume of polarized toric varieties.
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Chapter 2 Kahler geometry and pluripotential theory

2.1 Kahler geometry

In this section, we review some basic definitions and notations in Kéhler geometry.
We assume that the readers are familiar with the notion of complex manifolds.

Let (X, J) be a complex manifold, namely, X is an even dimensional manifold and
J is a integrable complex structure on X.
Definition 2.1. A Riemannian metric g on X is called Hermitianifg(J X,JY) = g(X,Y)
for any tangent vectors X, Y.

Given a Hermitian metric g, one defines
w(X,Y) :=g(JX,Y), forany X,Y. (2.1)

One can check that w is antisymmetric in X, Y. Hence, o defines a real (1, 1)-form.
Definition 2.2. A Hermitian metric g is called Kdhler if the associated (1, 1)-form w is
closed. A tuple (X, g) is called a Kdhler manifold if X is a complex manifold and g is a
Kéhler metric.

We always do not distinguish w and g.
Example 2.1. The complex projective space [P has a natural Kéhler metric wgg called

the Fubini-Study metric, given by
1 —
Wpg = 5\/—16610g(|X0|2+~-+ 1X,12), (2.2)

where [ X, : -+ : X,,] is the homogeneous coordinate of P". It is easy to check that wpg
is well-defined.

Example 2.2. A polarized manifold (X, L) consists of a complex manifold together with
a ample line bundle L. The polarized manifold is an important class of examples of com-

pact Kdhler manifolds. We always denote
d, :=dim HO(X, L™). (2.3)
Take a basis {s; }7210_ ! of H 0(X , L™) for the large enough m > 0, one can define a holo-
morphic map
I, X = pam=1,

x B [sp(x) @ sy (0] (2.4)
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In fact, the map 1,, is a embedding, called Kodaira embedding. Then %zfna)Fs €ci(L)is
a Kéhler metric.

We recall the dd®-lemma.
Lemma 2.1 (dd°-lemma). Let X be a compact Kihler manifold. If w and 5 are two real
(1, I)-forms in the same cohomology class, then there exists a function f : X — R such

that
n—ow=ddf, (2.5)

where dd° : \/_66
We fix a compact Kdhler manifold (X, J, g) of complex dimension n > 1. Let @ be
the corresponding Kéhler form and V be the Levi-Civita connection of g on T"X. We also

denote the natural extension of V on T®X by V. Take the holomorphic local coordinate

(z', -+, z") of X, the non-zero Christoffel symbols with respect to the basis { R } of
T* X are
i _ ‘_ 0 i _ i
Iy = g 327 Sk’ F]E Iy (2.6)

where (g”) is the inverse matrix of (g;;). The Riemannian curvature components are

Rijki = _Riﬂk = Ri_ﬁz == zjlk =0, (2.7)
and
o d d
R-:=——g;— g” o 8kg—8,] (2.8)
ki —5k] I
Y 0z'0z/ 0z’ qaz P
The Ricci curvature R;; is defined by
k kl 0
Ri; = Ri7 B = szki = ——— logdet(g,7)- (2.9)
dzidzi
The Ricci form is defined by
V-1 . —
Ric(w) := 2—Rijdz’ ANdzl = —dd® log ®". (2.10)
T

A Kaihler metric w is Kdhler-Einstein (KE for short) if it satisfies
Ric(w) = Aw, (2.11)

for some 4 € R. By rescaling the metric, we can assume that A = 1,0, —1, which corre-

sponds to the three cases
c(X)>0, ¢(X)=0, c¢(X)<O0. (2.12)

When ¢;(X) < 0, the equation (2.11) was already solved by Aubin [2] and Yau [1]. When

9



Chapter 2 Kéhler geometry and pluripotential theory

c1(X) = 0, the equation (2.11) always has a unique solution due to Yau [1]. This is
the famous Calabi-Yau theorem. When ¢;(X) > 0 (called Fano manifold), the equation
(2.11) does not necessarily have a solution. There exists some well-known obstructions,
for example Mutsushima’s reductiveness [3], Futaki invariant [4], etc.

We set

b= {holomorphic vector field v such that v/ = gjzi_f for some f : X — C} .
0zk
(2.13)

The space § is a Lie algebra and is independent of the choice of metrics in the Kéhler
class [w]. Mutsushima [3] proved that § is reductive provided a Kéhler-Einstein Fano
manifold.

The scalar curvature is defined by
Scal() := g Ry. (2.14)

Definition 2.3. A Kéhler metric w is called a constant scalar curvature Kdihler (cscK for

short) metric if
Scal(w) = const, (2.15)
which satisfies the following equation
g"/0;0-(log det(g;7)) = const (2.16)

on compact Ké&hler manifold.
Note that the constant in (2.16) is the average scalar curvature
o re(0U [@]"!
[w]"

which only depends on X and the Kéhler class [w]. If (X, L) is a polarized manifold and

) (2.17)

w € c;(L), then
n—1
S\:n% =: nu(L), (2.18)
which is a algebraic numerical invariant. We will revisit it in Chapter 5.
In the thesis, we are interested in the existence of cscK metrics.
It is easy to see that the Kdhler-Einstein metrics are cscK metrics. Conversely, sup-
pose that X is Fano manifold and @ € ¢(X) 1s a cscK metric, then w is in fact Kéhler-

Einstein. Indeed, since both Ric(w) and w represent ¢;(X), then by dd°-lemma, there

10



Chapter 2 Kéhler geometry and pluripotential theory

exists a real smooth function f : X — R such that
Ric(w) — w = dd°f. (2.19)

By taking trace of both hand sides in (2.19), it follows that Scal(w) —n = Af. But the left

hand side is a constant function, which is a harmonic O-form. By Hodge decomposition

theorem, both hand sides must be 0. Thus, f is a constant function. and hence Ric(w) = w.
The following theorem, due to Futaki [4], gives an obstruction to finding cscK met-

rics in a Kédhler class. It will turn out to be a first glimpse into K-stability.

Theorem 2.1 ([4]). Let (X, w) be a compact Kdhler manifold. one defines the functional

Fut(v) : § — C, called Futaki invariant, by

Fut(v) = J f(Scal(w) — S)a", (2.20)
X

where f is a holomorphy potential for v. Then the functional Fut is independent of the
choice of metrics in the Kéhler class [w].

In particular if [w] admits a cscK metric, then Fut = 0.

2.2 Pluripotential

In this section, we introduce the pluripotential theory, geodesic rays and the structure
of the space of Kéhler potentials.

n

Let (X, w) be an n-dimensional compact Kéhler manifold. We denote V' := j o".

X
We refer to [54], [55], [56], for more story of pluripotential theory.

2.2.1 Finite energy potential

Definition 2.4. (i) A function ¢ on the domain U C C" is called plurisubharmonic
(psh for short) if it is upper semi-continuous and for all complex lines A C C”, the

restriction ¢|;;44 1S subharmonic in U N A, i.e.,
2r

B(x) < % J B(x +eV198)q0, (2.21)

0
forall x € U and & € C" with |&]| < d(x,0U).

(i1) A function ¢ is called w-psh function if ¢ € L'(X,RU{—00}) which can be locally

written as the sum of a smooth and a psh function, and such that
®+dd°¢ >0 (2.22)

in the sense of current.

Denote by Psh := Psh(X, w) the space of w-psh functions ¢ : X — [—o0, +0), en-

11



Chapter 2 Kéhler geometry and pluripotential theory

dowed with L'-topology as the weak topology. To find canonical metrics in Kéhler class
[w], by dd®-lemma, we know that it suffices to consider the following space of potential

functions
H:={¢p €eC(X)| wy :=w+dd°¢ >0}, (2.23)
called the space of Kdhler potential. For any ¢ € H, then
a)’; = (@+dd°P) A -+ A (0 + dd°¢) (2.24)

defines a positive measure on X, called the Monge-Ampére measure of ¢p. Obviously,
H c Psh. By Demailly regularization Theorem, every ¢ € Psh can be written as the
point-wise limit of a decreasing sequence of Kéhler potentials.

The Monge-Ampere energy E : H — R is defined as the antiderivative of the

Monge-Ampere measure, given by

n

. 1 Jj n—j

for any ¢p € H. It is easy to compute its first order variation

(E'@).00) = 5| E@+isp)=v! J s, (226)
t=0 X
for any ¢ € H and 6¢p € C*®(X). It follows that
_ __ 1 S vy A
E@® ~ By) = 5 Z:;L((‘” v, Ay, (2.27)

for any ¢, w € H. In addition, the Monge-Ampére energy E satisfies
Eu+c)=E(@p)+cforp e H, c €R, (2.28)
and
¢ <y => E(p) < E(y) for ¢,y € H, with equality iff ¢ = . (2.29)

It follows that the functional E admits a unique extension as a monotone, upper semi-

continuous functional
E : Psh - RU{—}, (2.30)
obtained by setting
E(¢) :=inf{E(y) : v € H,y > ¢}, (2.31)
for any ¢ € Psh. The space of finite energy potentials can be defined as
E'=E'M,w) :={¢p €Psh : E(¢) > —c0}. (2.32)

12



Chapter 2 Kéhler geometry and pluripotential theory

The convex set
ELX, @) = {qbeel ‘ SuP¢<CandE(¢)>—C} (2.33)

is compact (for the L'-topology) for each C > 0.
Definition 2.5. The strong topology of €' is the coarsest refinement of the weak topology
in which E : €' — R is continuous. In other words, ¢ ; € E ! converges to ¢ in the
strong topology if and only if ¢p; — ¢ in the weak topology (i.e. IM l¢p; — plo" — 0) and
E(¢;) — E($), denoted by ¢; = ¢.

Let wy, ---, ®, be Kdhler forms. For any gbj € Psh(coj), j =1,---,n,we consider the

canonical approximations
¢ :=max(¢;. —k) € Psh(w;) N L(X). (2.34)
Then the fundamental work of Bedford-Taylar [57] allows us to define
(w0 + ddcq’;(lk)) A - A (o, + dd° ﬁ,k)) (2.35)

on X as a closed positive (n, n)-current, i.e. a measure. Indeed, we locally write w; =

dd®y; for some smooth functions y; on U C X, so that w; + ddc¢§.k) = ddcu;k) on U with

u;k) =y +q’>§k). Then u;k) is a bounded psh function. Thus u(lk)(ddcugk)) is a well-defined

current. We define

ddu®™ A ddu? 1= dd°@(” (dd°uy). (2.36)
It is easy to check that ddcu(lk) A ddcu(zk) is a closed positive (2, 2)-current. Inductively, we
can define
ddu™ A - A ddu? = dd°@(Pddul” A - A ddoul)). (2.37)

In fact, this gives a global measure on X.
The heart of Bedford-Taylor’s theory is the maximal principle (see [57]), which en-

ables that the measures
TACINEN SRS WRPRRNICIE A A -+ A (@, + dd°¢i) (2.38)

form an increasing sequence of Borel measures, whose mass is uniformly bounded from
above by [0{] - [@,,].

Thus, we can define the mixed Monge-Ampére measure as

((01 + ddcd)l) A A (a)n + ddc¢n) = klinolo iuk(d)l’ T (rbn)’ (239>

which is a positive Radon measure with total measure < [w;] -+ [w,] and symmetric,

13



Chapter 2 Kéhler geometry and pluripotential theory

multilinear with respect to each ¢.

For any ¢ € Psh, its Monge-Ampere measure is defined as
a)g = (w+dd°P) A -+ A (w + dd ). (2.40)

We state a proposition which gives a glimpse for the strong convergence in £!, see
[5 S]Theorem 3.46

Proposition 2.1. For ¢,,¢ € el if o 5 ¢, then a)gk — a)g weakly, and IM |y —
Pl — 0 forany v € £,

2.2.2 The structure of the space of finite energy potentials
2.2.2.1 Geodesic and energy functional

Mabuchi [59] proved that H is a Riemannian symmetric space of the constant neg-
ative curvature for the L?-structure. Hence, we can compute its Riemannian connection
and geodesic ray. Let ¢, € H be a smooth curve for an interval I C R. By a simple

computation, it is the geodesic if and only if it satisfies the following equation

b0~ 106,12 = &, — &/ 0,6,0:6, = 0, (2.41)
where g, is the metric of w + dd“¢,. Consider

D; :={r e C*|-log|r| € I}. (2.42)
We can view ¢, as a function on X X D; by
D(-,7) 1= P,(+) (2.43)

fort := —log|z| (in this thesis, we always use 7 as coordinate of D; or C and |z| = ™)
and also denote by @ : I — H. When I = (0, 1), we denote D = D;.
Observed by Semmes [60] and Donaldson [61], ¢, is geodesic if and only if @ sat-

isfies the following homogeneous Monge-Ampere equation
(pjo + dd°@)"*! =0, (2.44)

where p; : X x C — X. From this point-view, we can extend the geodesic to £
Definition 2.6. (i) A psh path is a map @ : I — Psh if the corresponding function
on X X Dy is pjw-psh.
(i) A pshpath¥ : (0,1) — Psh is dominated by w(-psh function y, y; if
}1_1;18 d)t < Yo, }1_1;1’11 (.bt < Y- (245)
If such ¥ exists, a simple envelope argument shows that there exists a largest one

14
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@ : I — Psh, called psh geodesic segment joining ¢ to ¢y,

@ =sup ¥, (2.46)
ves
where
S := {psh path ?|¥ is dominated by ¢, ¢, }. (2.47)

Lemma 2.2 (Darvas’s survey [58]-6m™33-14) When ¢, ¢, € Pshn L™, then such &

given by (2.46) is the unique bounded pj@-psh solution of the equation

(Prw + dd°@)"t! =0,
 + dd°®@|, > 0, ® is S! — invariant, (2.48)
limt—)O d)t = ¢O’ hmt—)l ¢t = ¢1'

For each psh path @, we have the following well-known computation (see
[54]Proposition 6.2)

ddS(E > @) = (py), (e +de,

o)) (2.49)
Hence, one obtains that E is convex along a psh path and is affine along a psh geodesic
segment.
Definition 2.7. Amap @ : Ry, — & Uis called a psh geodesic ray if the restriction of
@ to each compact interval [a, b] coincides (up to affine reparametrization) with the psh
geodesic joining ¢, to ¢,,.

We denote by R! = R1(X, w) the space of psh geodesic rays in £! emanating from
0. We also write R® = R*®(X, w) for the set of locally bounded geodesic rays emanating

from O.

Mabuchi [62] defined a functional M on H whose critical points are cscK metrics,
called K-energy or Mabuchi functional, given by its variation along a path ¢, = ¢+ 1ty €
H with v € C®(X),

d r n
ol @) =] v sy, (2.50)

He also computed the 2nd derivative of M along smooth geodesics and obtained that M

is convex along smooth geodesics. This is an important property for M as a functional.
Unfortunately, in general, there is no the smooth geodesics in H. Chen [63] showed

that for any two elements in H can be joined by C!*!-geodesic. Lempert and Vivas [64]

proved that there does not always exist a C> geodesic between two smooth Kihler poten-
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tials. Darvas and Lempert [65] observed that the C'*!-regularity is optimal.
Chen [44] and Tian [66] represented explicitly K-energy as

M(¢) = H(@$) + SE($) — nEgic()(®): (2.51)

where

H(p) =V~ J log <%) o) (2.52)
X

is the entropy of the measure a)g with respect to @”, and E , 1s twisted Monge-Ampere

energy, defined by

n—1

_ 1 o on=l=j
E, (¢) = anz:;)JX qb)(/\a)d)/\coy, , (2.53)

for a closed (1, 1)-form y. This is the so-called Chen-Tian formula.

Since the mixed Monge-Ampére measure is well-defined on £, then one can extend
the functional H and E,, to £ . Thus M is a well-defined functional on &' from this
formula (2.51), due to Berman-Darvas-Lu [67].

The convexity of K-energy along C'!-geodesic or more general psh geodesic is a
very crucial question to understand the structure of this functional and find its critical
points. Berman-Berndtsson [50] show that K-energy is convex along a C'!-geodesic.

Berman-Darvas-Lu [67] prove that K-energy is convex along a psh geodesic in £.

2.2.2.2 Darvas’s d,-distance

By Darvas’s works [68-69], he constructed a natural L'-Finsler metric d; on H with

—d
the property £! = H ', defined as follows,

1
di(¢,y) := inf{L ||<]5,||L1(w¢t)dt (@1)se(0.17 1s smooth path joining ¢ to y/} ,
(2.54)
forany ¢,y € H. If ¢,y € &', then there exist ¢ wr € H such that ¢, \, ¢ and
Vi \ VY,

di(p,y) 1= klgilo di(p> wi)- (2.55)

The d-distance is independent on the choice of sequences {¢, } and {y; }. He showed
that (£, d;) is a complete metric space. Moreover, metric topology induced by d; is

nothing but strong topology. Any psh geodesic @ : I — £! in the sense of Definition 2.6
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Chapter 2 Kéhler geometry and pluripotential theory

((i1)) is a constant speed geodesic for d, i.e., there is a nonnegative constant C, such that

d (¢, $,) =C|t —s|, Vs,t € I. (2.56)

We refer to Darvas’s survey [58] to the detail of this section.
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Chapter 3 Volume of big divisors

Let X be a normal projective variety.

3.1 Volume function

In this subsection, we review some of the standard facts on the volume function.

Given a Cartier divisor D and a curve C on X, the intersection number is defined as

By the Riemann-Roch theorem, this is well-defined. When D is a hypersurface that does
not contain C, then the intersection number counts (with multiplicities) the number of
points of intersection of D and C.

This formula implies that the intersection number is linear in D. Thus we may extend
the definition of the intersection number D - C by linearity for a R-Cartier divisor D and a
curve C. Indeed, an R-Cartier divisor D is represented by a finite sum D = )’ ¢;A; where

¢; € Rand A, is a Cartier divisor. Then the intersection number is defined as
D-C=) ¢(A;-C) (3.2)

for any curve C C X.

We say that two R-Cartier divisors D and D’ are numerically equivalent if
D-C=D'-C (3.3)

for any curve C on X, denoted by D = D’.

The Néron-Severi space N'(X) is the real vector space of numerical equivalence
classes of R-Cartier divisors on X. In general, the Néron-Severi space is denoted by
N'(x )r- But for simplicity, we denote it by N Y(X). For any Cartier divisor D, the

volume of D is defined to be

h°(X, mD
Vol(D) = lim sup h (X, mD) (3.4)
m—o0 m"/n!
For any natural number a > 0, we have
Vol(aD) = a"Vol(D). (3.5)
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It follows that the volume for any Q-Cartier divisor D is defined to be
Vol(D) = LnVOI(aD), (3.6)
a

for some a € N, such that aD is Cartier divisor. This is independent of the choice of a.
The volume of a Q-Cartier divisor depends only on its numerical equivalence class. Thus,
the volume function can be descended to N 1(X )o- Then the volume function extends

continuously to N''(X). The volume function satisfies the homogeneous property, i.e.
Vol(aD) = a"Vol(D). (3.7)

for any a > 0 and any D in N'(X).

We recall some definitions of positivity of R-divisors. An R-divisor D in N!(X)
is called nef" if the intersection number L - C is nonnegative for any curve C on X. The
volume of a nef R-divisor D is equal to the top self-intersection number D". All nef classes
in N'(X) form a convex cone, called the nef cone, denoted by Nef(X), whose interior is
called the ample cone, denoted by Amp(X). An R-divisor D in N'(X) is called big if

Vol(D) > 0. (3.8)

All big classes in N!(X) form a convex open cone, called the big cone, denoted by
Big(X), whose closure is called the pseudo-effective (psef for short) cone. For any two

big R-divisors D and B, one can obtain
Vol(D + B) = Vol(D). (3.9)

For more details of the volume function, we refer to the standard reference [70].

3.2 Positive intersection product

In this subsection, we present some preliminaries about the positive intersection
product. We follow the notions of [71]. References to this subsection are [72], [71],
[73].

In general, the volume of a big divisor is not equal to its top self-intersection number.
But it can be computed as the movable intersection number (see [70]P2Pr 1) by Fujita’s
approximation theorem. In other words, for any big divisor D, let z,, : X,, = X be the
resolution of base locus b(|mD|) with the exceptional divisor E,, and set D,, = x,, D —

1
;Em, then

Vol(D) = lim D". (3.10)
m
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To compute the volume of a big divisor, in [71] the authors introduced a valid notion, the
so-called positive intersection product. Next we recall the notion (also see [71], [72] for
details).
Recall that the Riemann-Zariski space of X is the locally ringed space defined by
x:=l(iLnX”, (3.11)

T

where X, runs over all birational models of X with the birational morphismz : X, — X.
Here the projective limit is taken in the category of locally ringed spaces. We do not use
the theory of Riemann-Zariski spaces in an essential way in this paper.

For any smooth projective variety V' of dimension n and any integer 0 < p < n, let
NP(V) be the real vector space of numerical equivalence classes of codimension p-cycles

(see [74]CPapter 19) " Any birational morphism v : ¥/ — V induces a pull-back morphism
v i NP(V) - NP(V') (3.12)
and a push-forward morphism
v, : NP(V') - NP(V). (3.13)

There exists an intersection pairing N”(V) x N"P(V) — R, which is preserved under
pull-back by birational morphisms, and for which push-forward and pull-back are adjoint
to each other.
Definition 3.1 ([71]P¢ton 1.1) " For any integer 0 < p < n,
- the space of p-codimensional Weil classes on the Riemann-Zariski space X is de-
fined as

NP(X) :=l(iLnN”(Xﬂ), (3.14)

T

with arrows defined by push-forward,

- the space of p-codimensional Cartier classes on X is defined as

CN(%) :=lim N7(X,,), (3.15)

T

with arrows defined by pullback.
By definition, a Weil class @ in N?(X) is given by its incarnations a, in N(X,) on

each smooth birational model of X, satisfying
V*((X”/) =Q,n (316)

for any birational morphism v : X, — X_» withz' = z" o v.
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On the other hand, since v,v*a = a for any birational morphism v : X, — X_»

and any a« € N?(X ), then it induces an injection
CNP(X) - NP (%), (3.17)

i.e., a Cartier class is a Weil class. Concretely, a Weil class « is Cartier iff there exists z
such that its incarnation «,, on the higher blow-ups X ,, are obtained by pulling back «.
Further for each 7, given a class a« in N?(X ), one can extend it to a Cartier class by

pullback of it. Thus, we have the natural injection
NP(X,) & CNP(X), (3.18)

When p = 1, we refer to the space CN 1(%) as the Néron-Severi space of X. Its
elements are the so-called Shokurov's b-divisors.

In the sequel, we use the notation a > 0 for a psef class @ in N?(X) (see [74]). We
consider positive Cartier classes in X. For a birational morphism v : V' — V, aclass a
in N'(V) is nef (resp. psef, big) if and only if v¥a is nef (resp. psef, big). Therefore, one
can extend these definitions to the Riemann-Zariski space.

Definition 3.2 ([71]P¢fintion 1.6) A Cartier class « € CN (%) is called nef (resp. psef,
big) if its incarnation a,, is nef (resp. psef, big) for some 7.

On a smooth projective variety V', for any classes ay, -, a, € N L(¥), the intersec-
tion product a; --- @, belongs to N?(V') (see [74]). Further for any birational morphism
v: V' -V, onehas via - via, = vi(a; - a,), see [74]1Chapter 19 One can define the
intersection product of p-Cartier classes ay, -+ a, € CN 1(&"), which have a common
determination X, as the Cartier class in C N”(¥) determined by a; , -+ a,, ;.
Definition 3.3 ([71]P¢fnton 25) " For any big classes a,, -, a, € CN ' (%), their positive

intersection product
(a) -+ a,) € NP(X) (3.19)
is defined as the least upper bound of the set of classes
(ay = Dy) -+ (a,— D,) € NP(X) (3.20)

where D; is an effective Cartier Q-divisor on X such that a; — D; is nef.

Remark 3.1. In [72]Theom 335 the authors give an analytic definition of the positive in-
tersection product (they call it as the movable intersection product) for Kdhler manifolds.
For any big classes ay, -+- , a,, on the Kéhler manifold V', in which the big class means that

each a; can be represented by a Kdhler current T, i.e. a closed positive (1, 1)-current T
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such that T > 6w for some smooth Hermitian metric @ and a small constant & > 0, one

defines

(ay - a,) i=supm(y; A= AY,) (3.21)
Tj,zr

where T; € a; is a Kéhler current with logarithmic poles, i.e. there is a modification

T Vj’ — V such that 7rj*Tj =[E j] +7; for some effective Q-divisor E y and closed

semi-positive form y;. Here we take a common resolution r : V' — V, and write
g _
=T, =E;]1+v;. (3.22)

Definition 3.4 ([71]P¢fintion 2.10) “ Eor any psef classes a;, -+, a, € CN (%), their posi-

tive intersection product
(o) - a,) € NP(X) (3.23)
is defined as the limit
gl_i)r(r)1+((a1 +ey) - (a, +€7)), (3.24)

where y in CN!(¥) is any big Cartier class.
This definition is independent of the choice of the big class y (see [71]Pefinition 2.10y

In fact, if a, -+, a, € C N (X) are nef classes, then

() - a,) = a - a, (3.25)

For any big R-divisor D € N!(X), we have
Vol(D) = (D"), (3.26)

see [71]Theorem 31 150 see [75]Pefinition 117 for an definition by pluripotential theory.
An analytic definition of the volume of the big classes is given in [72]P¢fition 32 (gee

Remark 3.1). Concretely, the volume of a big class « is define as

Vol(a) := sup Jﬁ” > 0, (3.27)

Tea

where the supremum is taken over all Kéhler currents T" € a with logarithmic poles, and
u*T = [E] + B with respect to some resolution v : X — X such that E is an effective
Q-divisor and f is a closed semi-positive form on X.

An interesting fact about the volume function on the big cone, due to Boucksom-
Favre-Jonsson [71], is stated as follows,

Theorem 3.1 ([71]""€°"®MA) ' The volume function is C'-differentiable on the big cone
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of N'(X). Ifa € N'(X) is bigand y € NY(X)is arbitrary, then

4 Vol(a + 1) = n{a" ') - y. (3.28)
dtli=0

We collect some facts about the positive intersection product as follows, for using
later,
Proposition 3.1 ([71]Proposition 2.9, Corollary 3.6y = (j) The positive intersection product
is symmetric, homogeneous of degree 1, and super-additive in each variable. More-
over, it is continuous on the p-fold product of the big cone of CN Lx).
(i1) For any psefclass « in CN 1(QE), one obtain

(a") = (") - a. (3.29)

Remark 3.2. In general, the positive intersection product is not multilinear, see

[75]Pefinition L17 £ an analytic explanation.
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Chapter 4 K-stability and non-Archimedean formulation

In this Chapter, we introduce K-stability from the original algebro-geometric defi-
nition of Donaldson [10] and the non-Archimedean formulation [19]. From now on, we
assume that X is an n-dimensional normal projective Q-Gorenstein variety, which means
that the canonical divisor of X is Q-Cartier.

Let (X, L) be a polarized variety, namely, X is a projective variety and L is an ample

line bundle on X.

4.1 Test configuration and K-stability

Now, we state the definition of test configuration and K-stability from [15, 19].

Definition 4.1. A test configuration (X, L) for (X, L) consists of the following data:
(1) a flat and proper morphism of schemes 7 : X — C;

(ii) a C*-action on X lifting the canonical action on C;

(iii) a C*-linearized Q-line bundle £ on X’;

(iv) 1somorphism (X,, L,) := (zr_l(t), £|7[_1(t)) ~ (X, L) forany ¢ # 0.
A test configuration (X, L) is called normal (resp. ample, resp. semiample) if X is normal
(resp. L is n-relative ample, resp. z-relative semiample).
Example 4.1. A product test configuration is (X, L) X C with a diagonal C*-action. A
trivial test configuration is a product test configuration with diagonal C*-action trivially
acting on X, denoted by (X a1, La1).

Ifthere is a C*-equivariant birational morphism X; — X, between any two given test
configurations, then we say X'; dominates X,. A test configuration &X' is called dominating
if X dominates X 41. Any two test configurations can be dominated by a third.

We say that two test configurations (X, £) and (X', L") for (X, L) are equivalent if
the pullbacks of £ and £’ to some test configuration X'’ dominating X and X’ coincide.
We will see in Section 4.2 why we define the equivalence of test configurations.

For each m € N, we have a vector space
H,, := H(Xy,mL) (4.1)
with a C*-action. We denote by d,, := dim H,, and w,, the weight of the induced action

on /\dem, which is a polynomial of degree at most n + 1 by the equivariant Riemann-
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]Theorem 3.1

Roch theorem (or see [19 ). Then we have an asymptotic expansion

u’m -1 -2 1
:— F F F e . -2
/ 0 m 2m | ( )

The Donaldson-Futaki invariant of (X, L) is defined as
Fut(X, L) := -2F,. (4.3)

When the central fiber &}, is smooth, as computed by Donaldson in [10], the Donalson-
Futaki invariant is the original Futaki invariant (2.20).
Definition 4.2. The polarized variety (X, L) is
- K-semistable if Fut(X, L) > 0 for all semiample test configurations (X, £);
- K-stable if it is K-semistable, and has Fut(X, £) = 0 only when (&, L) is trivial test
configuration;
- K-polystable if it is K-semistable, and has Fut(X, £) = 0 only when (X, L) is prod-
uct test configuration;
- uniform K-stable if for all semiample test configurations, there exists a uniform

constant 6 > O satisfies
Fut(X, L) > 6[|(X, L), (4.4)

where ||(X, £)|| represents some norm of test configuration (X, L), defined later,
which is just non-Archimedean J-functional JNA.
Later, Odaka [76] and Wang [77] gave an intersection formula of Donaldson-Futaki

invariant,

—n il

(Kzpi L) & €™
Vol(L) (n+ 1)Vol(L)’

where (?, E) is the compactification of (X, L) over P! by adding (X, L) at oo € P'. This

Fut(X, L) = (4.5)

formula looks like more convenient than the original definition (4.3) to compute.

4.2 Non-Archimedean metrics and functionals

In this section, we introduce the non-Archimedean formulation for K-stability, and
focus on representing test configurations as non-Archimedean metrics. We refer to [19],
[78].

In this thesis, a valuation on X means a real-valued valuation v : C(X)* — R,
trivial on C. We denote by X val the space of valuations. The center c(v) :=cy(v) € X is

characterized as the unique (scheme) point & € X such that v > 0 on the local ring Oy
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and v > 0 on its maximal ideal.

Denoted by X" the Berkovich analytification of X with respect to the trivial absolute
value on C. We view X" as a compact topological space, whose points can be understood
as semivaluations on X, i.e. valuationv : C(Y)* — R on the function field of a subvariety
Y of X, trivial on C (Here, we do not give the explicit definition of Berkovich analytifi-
cation, see [79]). The subvariety Y is called the support of v, denoted by Supp(v). As a
set, we have X® = [[, Y** with Y running over all irreducible subvarieties of X, and
the topology of X" is the coarsest topology such that for each Zariski open set U C X,
we have:

- theset U™ := {v € X* | Supp(v) NU # @} is open;
- for each f € O(U), the function | f| : U™ — R, defined by | f|(v) := e ') g
continuous.
There exists a continuous map ker : X" — X sending v to the generic point ker(v) of its
support, called the kernal map. The semivaluation v gives rise to a multiplicative norm

| - |, on the residue field C(ker(v)) as follows,
|f], :=e v (4.6)

for any f € C(ker(v)), which is a non-Archimedean norm, i.e. satisfying |f + g|, <
max{|f|,.|gl,} forany f, g € C(ker(v)). We denote by H(v) the completion of C(ker(v))
with respect to the norm | - |,.

Givenanyideala C Oy andv € X val with the center c(v) € X, one sets
v(a) :=min{o(f) | f € a.)}- (4.7)

In particular, we can just consider the divisorial valuations. Denoted by X 8" the set
of rational divisorial valuations on X, i.e.,, v € X EDiV : C(X)* — Q, such that v = cordp
for some ¢ € Q and prime divisor F over X, which means that there exists a normal
birational model Y of X and F is a prime divisor on Y. The log discrepancy of v € X &iv

is defined as
Ax(v) 1= c(1 + ordp(Ky/x)), (4.8)

where Ky, y is the relative canonical divisor. The trivial valuation is defined as v, (f) :=

0 for any f € C(X)*. For convenience, we set A y(vy,) = 0.
div

a =X gv. This has a canonical

The first factor projection p; induces a map (X X C)
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sectionoc : X (%iv - (X x C)gv, called Gauss extension, defined by

c(v) (2 fi‘L'[> = min{o(f;) + i}, (4.9)
for each finite f, -+, f, € C(X). Foreach v € X% one has
Axyclo() = Ax(v) — 1, (4.10)
see [19]°°¢4°" 4 Furthermore, each test configuration X for X gives an embedding
oyt XS (XD C X (4.11)

A vertical R-Cartier divisor on X means a C*-invariant R-Cartier divisor with support in
Xp- Such divisors forms a finite dimensional R-vector space, denoted by VCar(X)g.

Each D € VCar(X)q defines a continuous function ¢,

forv e X div, where the right-hand side is defined as m o +(0)(Ox(—mD)) for any choice
m € Z such that mD is a Cartier divisor. We do not explain the explicit definition of
the continuity here, which is for Berkovich topology.

If p : X' > X is a morphism between test configurations, then o/ (v)(p* D) =
ox()(D) forany v € X div "and hence ¢ D = @p- It gives rise to a Q-linear map

any . __ 1; 0 an
PL(X®™) := 1%)nvCar(Af)Q - COx ), (4.13)

An important fact is the density of PL(X®").
Theorem 4.1 ([78]7"€°"M 22) " The space PL(X ™) is dense in CO(X®") with respect to
the topology of uniform convergence.

Let Q be a Q-line bundle on X. For each test configuration (X, Q) for (X, Q), we

pick a common resolution X', with morphisms p : X' - X and r : X’ - X X C. Then

D :=p*Q — 7*p]0 € VCar(X')q, (4.14)
and mapping Q to D gives a one-to-one correspondence between the set of equivalence
classes of test configurations for (X, Q) and the Q-vector space h_r)nX VCar(X)q. Then
we define

A (non-Archimedean) line bundle L*" on X*" means the analytification of the to-

tal space of a line bundle L on X. By the GAGA result for Berkovich analytification
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in [79]5¢¢ton 33 " one has a canonical map p* : L¥ — X?®' which is the analytifi-
cation of the corresponding map L — X. The fiber L3 := (p*")~!(v) over a point
v € X is isomorphic to the Berkovich affine line over the complete residue field H(v),
i.e. (SpecH(v)[T])*", where T is a formal variable.

Denote by L*™* the complement in L?" of the zero section. A (non-Archimedean)
metric on L™ is a function ¢™ : L™ — R such that | - [jam = e~ L panx RX
behaves like a norm on each fiber L%" (see [79]). Parallelling with the complex side, if
¢*" is a metric on L*", then any other metric is of the form ¢*" + @, where ¢ is a function
on X,

Any line bundle L*" on X*" admits a trivial metric ¢, as follows. Given a point
v € X, let £ be a nonvanishing section of L on an open neighborhood U C X of €.
Then & defines a nonvanishing analytic section of L*" on the Zariski open neighborhood
U™ of v in X*, and ¢, (£(v)) = 0. The trivial metric allows us to consider metrics on
L™ as functions on X®". We will always use this notation.

Definition 4.3. A non-Archimedean metric ¢, defined by (4.15) is called positive if some
representative (X, L) of ¢ is semiample.

Denoted by HNA(L) the set of non-Archimedean positive metrics on L*".

In [19], the authors defined the non-Archimedean version of the usual functionals
on H as functionals on HNA(L). For any ¢ = @y p) € HNA(L), we have the following

definition of non-Archimedean functionals by the intersection formula:

EM(g) i=— (") (4.16)
’(g) :=(C- L)~ "+ € Lpy) (4.17)
AN @) =L - L) (4.18)
T (@) 1=AM () - EMY (o) (4.19)
(EQNA(p) :=(p"p}Q - L") (4.20)
RNA(@) :=(K§’§1 o L) (4.21)
HNNg) :=(K2% L) - (K;?; o L) (4.22)

MNA (@) =HNA(@) + SEN (@) + RN (p)
=(KSE L)+ %(E””), (4.23)

where Q is a line bundleon X, p : X - X pt and Lp1 = pyL. Similar with the original

ma JNA are nonnegative on HNA(L), and have

Aubin I, J-functionals, functionals and
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the following equivalent relation

1 Na < INA — gNA ¢ gNA, (4.24)
n

By (4.5), we have
MNA(@) = Fut(X, £) + V™ (X eq — Xp) - L), (4.25)

where Xy ¢ = X E is the reduced part of central fiber if we write Xy = ), bpE. It

follows that if central fiber &, is reduced, then
MNA(@) = Fut(X, L). (4.26)

In fact, by algebro-geometric theory, reducedness is not a difficulty. We can do a base
change to get a reduced test configuration (X;,L;) =: ¢, from any non-reduced test

configuration (X, £) for d sufficiently large (see [19]°TPosition 716y ' Then one has
Fut(X,, £,;) = MN@,) = d M (@). (4.27)

Hence, K-stability conditions can be stated in terms of MN*, In particular, uniform K-

stability is equivalent to the following coercivity of MNA
MNA > 5JNA on HNA, (4.28)

for some positive constant .

In both sides of Archimedean and non-Archimedean setting, they have similar story.
The connection of them is that non-Archimedean version FN* of a functional F should
compute the slopes at infinity of F along psh rays with algebraic singularities, stated in
later.
Remark 4.1. Here, we use the definition of uniform K-stability in [19]. One also can
see [20]. The difference of these two formulation is norm functional. In [20], he used the

so-called minimum norm ||(X, L)||,,,. In fact,
VI, O, = TN (@) — TN (@). (4.29)

So these two definitions are same.

4.3 Filtrations and test configurations

A useful tool to study test configurations is the filtration, which is studied in [80],

[81], [19] and so on. In this section, we recall the basic theory of filtrations.
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We denote the section ring of L by

R=R(X,L) :=@PR, =P H'X.mL), (4.30)
m=0

m=0
which is a graded C-algebra.
Definition 4.4. A (graded) filtration & of the section ring R consists of a family of
subspace {F*R },0f R, for A€ Randm Z ., satisfying:
(i) (decreasing) #*R,, C !%"l,Rm ifA> A
(ii) (left-continuous) F*R, =N, _,F* R,,;
(iii) (multiplicative) #*R,, - F* R,, ¢ F*** 'R, , forany 1, € Rand m,m’ €
Z0;
(iv) (linearly bounded) There exists e_,e, € Z such that #™-R,, = R
F"+ R, =0forallm € Z,.
A filtration & is called a Z-filtration if F* = F L4 for all A € Z, which means that all
jumping numbers of & are integers.
A Z-filtration & is called finitely generated if the bigraded algebra
P 'R, (4.31)
AEZ,mEZ,
is finitely generated over C.

For any filtration &, we set

AW = inflA € R | FIR, # R,), A i=sup(A€R|FIR, #0), (4.32)
and
A o)
/1rnin = ”%I_I)Igo r’:lm, Amax L= ”}1_{20 I::X- (4.33)

For each A € R, one defines a graded subalgebra of R by setting
RY := P F™R,, (4.34)
meN

The volume of the graded subalgebra R is defined as

|
Vol(RP) := lim £ dim ™R, (4.35)

m—oo mh
In [82], the authors associated a measure on R to a filtration.

Theorem 4.2 ([82]). Let F be a filtration of R and Ai.m) be the jumping number of 4R .
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For each m, set

1 d dimF™R
Vi 1= 6, = — e (4.36)
dy ~ j di d

m
which is a probability measure on R. Then v,, has uniformly bounded support and con-

verges weakly as m — oo to the probability measure
v i= =Vol()™ L Vol(R®), (437)

called the /imit measure of the filtration %. Moreover, the support of v 1S [Ains Amax]-
In [81], the author constructed a Z-filtration for each test configuration. Given a test

configuration (&, £) of (X, L), one defines a filtration Fy . as

9& Ry ={s € H'(X,mL) | 5 e HOX, mL))}, (4.38)

where' s € H O(X\XO, mL) denotes the C*-invariant section defined by s € H°(X, mL)
and 7 is the coordinate of C as in Section 2.2.1. In fact, when (X, £) is an ample test
configuration, then #y ) is finitely generated.

Conversely, given a finitely generated filtration &, then the Rees algebra of & de-
fined as follows

Ree(F) := P (@ r—ﬂgﬁRm> (4.39)

meN \ 1eZ

is a finitely generated C[r]-algebra and generated in degree m = 1. We obtain an ample

test configuration
X :=Projai(Ree(¥)), and L :=0,(1). (4.40)

Proposition 4.1 (see [19]ProPosition 2.15) " The above construction is a one-to-one cor-
respondence between ample test configurations of (X, L) and finitely generated Z-
filtrations of the section ring R.

The Duistermaat-Heckman measure of a semiample test configuration (X, L) is the
limit measure of the filtration F y z).

In [19], the authors re-interpret the filtration &y ¢ in terms of valuations.
Theorem 4.3 ([19]7"erem 516) ' [ et (X, £) be a normal, semiample test configuration
of (X, L) dominating X, and write £ := p* pTL + D with the canonical morphism
p . X = Xc. Then we have

FlooyRu = [ s € Ry | vp(s) + mbylord (D) > 4) (4.41)
E
for all m divisible enough and all A € Z, where E run over the irreducible components of
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Xy, bg = ordg(&,) = ordg(r), and v := b]:_l res(ordg) is the Rees valuation of X
Moreover, the support [Ain, Amax] Of the Duistermaat-Heckman measure of F»
is

Armip = mMin blordg(D), and Ap, = max bz ordg(D) = ordg (D), (4.42)

where E is the strict transform of X X {0}.

We will use this description to compute a special example, the so-called Deformation
to the normal cone, in Section 7.2.1.

An important application of Duistermaat-Heckman measure is to compute the non-
Archimedean Monge-Ampeére energy of test configurations.
Lemma 4.1. Forany ¢ = ¢y ) € HNA(L), then we have

ENA(p) = J Adv, (4.43)
R

where dv is the Duistermaat-Heckman measure of (X, L).

4.4 Non-Archimedean pluripotential theory

In this section, we briefly introduce the non-Archimedean pluripotential theory de-
veloped by Boucksom-Jonsson. We refer to [78].

Definition 4.5. A psh metric on L*" is a function ¢ : X*" — R U {—o0}, not identically
—o0, that can be written as the limit of a decreasing sequence in HNAL).

Denote by PshN(L) the set of non-Archimedean psh metrics on L*. We endow
Psh™A(L) with the topology of point-wise convergence on X dv_ called weak topology of
PshNA(L).

Pick (n + 1) ample line bundle L; € Amp(X) and ¢; € HNA(L,.), i=0,:-,n, and
choose a dominating test configuration & such that ¢ = @, > We recall
Definition 4.6 ([78]Pefinton 312y The energy pairing takes an (n + 1)-tuple @; =
@) € HNAL), i =0, ,nto

(Lo @0) -+ - (L @) i= (Lo -+ - L,) € R, (4.44)

where Z,- on X is the canonical compactification of (X, L;).
The original definition in [78] fits in a very general setting, like L; and £; may be

not ample. But for simplicity, we just consider the ample case.

32



Chapter 4 K-stability and non-Archimedean formulation

For any (n + 1)-tuple (L;, ;) € Amp(X) X Psh™MA(L ;), the following quantity

L, «ee o (L, = inf L, <o (L yy, 4.45
( 0 (Po) ( n (Pn) WiEHNA(L,-),W,-Z(P,—( 0 lI/()) ( n v,) ( )

gives a unique extension of the energy pairing to []'_, PshNA(L,-), which satisfies
* upper semicontinuous with respect to weak topology on PshNA(Li),
* increasing in each variable,
* continuous along decreasing sequences.

Definition 4.7. The Monge-Ampére energy is defined by

NA . (L, (p)n+1
EZ @) = el

(L). The space of psh metrics of finite energy on L*" is defined as

(4.46)

for any ¢ € pPsh™A

EVNAL) := {p € PshNA(L) | ENA () > —o0}. (4.47)

We endow ENA(L) with the strong topology, which is the coarsest refinement of the
weak topology of PshNA(L) (i.e., the topology of point-wise convergence on X diV) in
which ENA : & LNA(L) - R is continuous.
Thus a sequence {@;} in € LNA(L) convergestop € £ LNA(L)ifand only if ¢; — ¢ point-
wise on X4V, Moreover, it converges strongly if and only if we further have ENA(qoi) -
EN9).
By the continuity of the energy pairing along decreasing sequence, then for a de-
creasing sequence in £"NA(L), the weak convergence is same as the strong convergence.
By the definition of non-Archimedean psh metrics, we have

EVNA(L), there exists a sequence Q; € HNA(L) such that

Proposition 4.2. Forany ¢ €
@; converges strongly to ¢. In other words, the space HNA(L) is dense in EMNA(L) with
respect to the strong topology.

For each n-tuple (L;, ;) € Amp(X) X € 1’NA(L,‘), there exists a unique probability

measure
MA@, -, ) € COX™Y, (4.48)
called mixed Monge-Ampére measure, such that
L(an MA@, . @) 1= (LI—IL)«) @) (L@ - (L) (4.49)

for any ¢ € PL(X?").
Indeed, by the density of PL(X®") in C%(X™) (see Theorem 4.1), the formula (4.49)

uniquely determines the mixed Monge-Ampere measure (4.48). For any ¢ = ¢p €
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PL(X®*") with D € VCar(X)q (we may assume that X’ is dominating), we choose an ample
test configuration (X, L) for some (X, L") such that £’ + D is relative ample. Then each
@ € PL(X™) can be written as a difference of functions in HNA(L’) for some ample
line bundle L’. Hence, the right-hand side in (4.49) is well-defined. By the increasing
of energy pairing, then ¢ —~ (0,9) - (L, @) - --- - (L,, @,) 1s a positive linear form on
PL(X®"). By density of PL(X®") in C%(X?"), it uniquely extends to a positive linear form
on CY(X ™). We conclude that the equality (4.49) gives rise to a positive measure on X ".

When @ = 1, we have

J N MAM (@}, . @,) =m(0, D-(Ly,@) - (L, 9,)
=TI e 5, O D Law) o L)
@, L) WieHNgglLf:),W(pi[XO] T, L,
T L e
ST L e s E10 Bl

- (4.50)

where the fourth equality holds by flatness of 7 : X — P'. Thus, the equality (4.49)
defines a probability measure.

In the special case, ¢; = @y 1) € HNAL),i=1,-,nand X, := Y b;E;, then

MANN @, @,) = D bi(Lylg - Lol p)y s (4.51)
J

where v; 1= bj_lr(ord Ej) and r : (X, C)div — X9V is the restriction map.

Definition 4.8. The non-Archimedean Monge-Amére measure of ¢ € & LNA(L) is de-

fined as
MANA (@) = Vol(L)"'MANA (g, ---, ¢). (4.52)
We will write
ky kg
MAM ] o ) - Vol(L) IMANA G, o 9, o ) (453)

for any @; € 81’NA(L), i=1,--,s.

With the help of the definition of the non-Archimedean mixed Monge-Ameére mea-

gl,NA

sure, we can define the non-Archimedean functional on (L) as the same formulation
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of Archimedean case. For any ¢ € £ LNA(L), one defines

r

ANA (@) 1= ) oMANA(0). (4.54)
We can re-define .
EN(g) 1= —— Z [ OMANA I, Oln T, (4.55)
n+1 &) xm
and
T @) 1= AN (@) — EN(g). (4.56)

Let (Y, Q) be a test configuration of (X, Q), where Q = QIXx{1}> we write Q = Q; — 9,

with Q; being relative semiample. Then one also defines:

MAN (g, @1+, @,_p) 1= MANA (g L @1, -+, @,-) = MANA (Do L @1, . @)

(4.57)
We define
n—1
(EQ)NA((p) - Z J (pMANA((pQ, (P[k], O[H—I—k]). (458)
k=0 J X"
1
When (¥,Q) = (X¢ := X X C,Ky* . = pjKy), we denote
NA K\® NA
R (@) := (E *¢©)" o), (4.59)

called the Ricci energy of . In [83], the authors generalized the definition of log dis-
crepency functional Ay : X" — [0, +o0]. We do not review their definition, but em-
phasis two important facts:

- A=+ on X\ X" and A < +o0 on X4V

- A is lower semicontinuous (This is essential difficulty in the study of YTD conjec-

ture).
For any ¢ € £'NA, one defines
HY\(¢) := [ Ax(OMAN (@), (4.60)
and
MNA = gNA 4 RNA 4 SENA, (4.61)

Since Ay is lower semicontinuous, then H NA is in general not continuous, just lower
semicontinuous, with respect to the strong topology of £MNA(L).

HNA

In particular, when ¢ € (L), then the above those functional coincide with those

defined by intersection numbers in Section 4.2.
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By [78]Theorem 734 ' we summarize the continuity of non-Archimedean functional as
follows and use it later.

Proposition 4.3. The functionals (EQNA JNA are strongly continuous in £ LNACL).

4.5 Psh rays and test configuration

In this subsection, we build a bridge between the Archimedean side and the
non-Archimedean side by giving a relation between psh rays with algebraic singularities
and test configurations. This is the important step to construct framework between
Archimedean and non-Archimedean formulation in the cscK (in particular, Kéhler-

Einstein) problem in terms of the variational method.

For each pshray @ : R, — Psh(X,w), supy ¢, is a convex function on ¢. Then

the slope at infinity

Amax = lim 1 sup ¢, (4.62)

%
exists in RU {4+o00}. A pshray @ : R, — Psh has linear growth if 4,,, < oo, which is
equivalent to that supy ¢, = O(?).

For rays in € ! the condition (4.62) means d(¢,,0) = O(t) as t - oo. In particular,
any psh geodesic ray has linear growth.

For any psh ray @ with linear growth, @ — at is bounded above as t — o0, for some

a € R. Equivalently, the S!-invariant pjw-psh function ¥ on X x D*, defined by
Y(X,7) 1= $_jog|r|(X) + alog]|z], (4.63)

is bounded above near X X {0}. Thus, it can uniquely extend to a quasi-psh function on
X x D. For any divisorial valuation w on X (we always use notations w representing
the valuation on X and v representing the valuation on X'), w(¥) > 0 makes sense as a
generic Lelong number on a suitable blow up. Concretely, if we write w = ord for some

Ecw X, then we define
w(?) :=w(p™¥P)
=Lelong number of p*¥ at the general point of E
= inf v(x, p*¥), (4.64)
x€eE

where v(x, p*¥) is the Lelong number of p*¥ at x. We have used the well-known Siu’s

result for the third equality.
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One can define
w(®@) := wW¥) — aw(r), (4.65)

which is independent of the choice of a.

Definition 4.9. For any psh ray @ with linear growth, one associates a function
Dy XG> R (4.66)

by setting @5 (V) 1= —c(V)(D).

hNA ]Theorem 6.2).

In fact, @y, € Psh™ (L) for any psh ray of linear growth (see [15

Recall for trivial valuation vy, 0(Vyi,) = 0rdxy(o;- It has the following property

from definition (see [15]-emma43)

DA (Viy) = SUPp Pnp = Ay (4.67)
Xle
Q
Choosing a smooth Hermitian metric 2 on L such that Ric(h) = w, then one can

setup a one-to-one correspondence

1:1 S'l-invariant psh metric
{ pshray @ : Ry, — Psh(X, ®) } — > . (4.68)
- e”“pihon (X x D, p{L)

We say that @ induces a psh metric on a normal test configuration (X, £) if the corre-
sponding psh metric on (X x D*, pTL) =~ (X, L)|p+ extends to a psh metric on (X, L)|p
(psh function on the complex space Y means a psh function restricted from the ambient
space. See Demailly’s notes [84] for pluripotential theory on singular complex space).
The following lemma gives a characterization which psh ray induces a psh metric of
a test configuration,
Lemma 4.2. ([15]*™™4%) Given a pshray @ : Ry, — Psh(X,®) and a normal test
configuration (X, L), the following are equivalent:
(i) @ induces a psh metric on (X, L)
(i) @ has linear growth and @\, < @ r)-
If the induced psh metric in (i) is further locally bounded, then @\, = @y z)-
Definition 4.10. A psh ray @ has algebraic singularities if it induces a locally bounded
psh metric on some normal semiample test configuration (X, £).
By Lemma 4.2, thus such a psh ray @ has linear growth and @y, = @y ). If given
a semiample test configuration, there exists those psh rays.
Lemma 4.3. For any ¢ € HNA(L), there exists a smooth psh ray @ with algebraic

singularities such that @y, = ¢. Furthermore, for any psh ray ¥ with Yy, < ¢, then
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Y <P+ 0(1).
Remark 4.2. In Lemma 4.3, @ is just psh ray. Psh ray with algebraic singularities and
semiample test configuration are not a one-to-one correspondence. It is possible that there
exist many psh rays with algebraic singularities on the same semiample test configuration.
In fact, if we take the envelope of such all psh ray with algebraic singularities, then get
a C1! psh geodesic ray with algebraic singularities. It is constructed by Phong and Sturm
in terms of the approximation argument (see [85-86]), the so called Phong-Sturm geodesic
ray. This type geodesic ray is one-to-one corresponding to semiample test configuration.
The following result connects the Archimedean side and non-Archimedean side.
Theorem 4.4 ([87]). For any ¢ = @y ) € H (L), let @ be any locally bounded
Sl-invariant Hermitian metric on £. Then for any Fe {E,AJ,J,E Q, R} satisfies

F'®(@) = FN(¢), (4.69)
where
F'®(®) := lim 1 F(¢,). (4.70)

For F € {H, M }, this identity holds if @ is a smooth positively curved Hermitian metric
on L.

As stated in section 2.2.2.1, in general, there is not smooth geodesic ray. For the
Phong-Sturm geodesic ray, entropy H and K-energy M don’t satisfy the slope identity
(4.69), just hold inequality

H'®(@) > HY(p), M'®@®) > M (¢). (4.71)

This is essential difficult of variational method in general cscK problem.

In [15], the authors introduced a more general geodesic ray, the so-called maximal
geodesic ray and built a one-to-one correspondence between such geodesic rays and func-
tions in £MNA,

Definition 4.11. A geodesicray ¥ : Ry, — EY(X, w) is maximal if any psh ray of linear
growth @ : R, — EN(X, w) with lim,_, ¢(s) < P(0) and @y, < Pya satisfies @ < P.

A maximal geodesic ray ¥ is thus uniquely determined by ¥#(0) and ¥y,. We de-

noted by R (X, w) the space of maximal geodesic rays in £! emanating from 0.

max

Theorem 4.5 ([15]T"€°®m66) () For any psh ray @ of linear growth, &y, €
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EVNA(L), and
ENA(@y ) = E'®(@) > —c0, (4.72)
equality holds iff @ is maximal.
(ii) Forany ¢ € £ Uand ¢ € EVNA(L), there exists a unique maximal geodesic ray @
emanating from ¢ satisfying @y, = @.
Theorem 4.6 ([21]Proposition 2.40, Lemma 2.41, Theorem 5.3)_ For any ¢ € EI’NA(L) let

@ = {¢p(s)} be the associated maximal geodesic ray. Then
J'(@) =INA (@), (E,)'(@®) = (E®)"(¢), (4.73)
and
H'®(@) > H (@), M'®(@) > M™\(9), (4.74)

where y € ¢(0).

4.6 The theory of test curves

In this section, we review the theory of test curves, developed in [88], [89], [90]. Our
notations follow [90].

For any ¢ € Psh(X, w), we associate the following notion of envelopes:
Pl¢] := s{;p{u/ € Psh(X,w) | v <0,y < ¢+ C for some C € R}, (4.75)
and
Pl¢]l; := SL*lp{l// € Psh(X,w) | v <0,I(ky) C I(k¢), forall k e N}, (4.76)

where ” * ” denotes the upper semicontinuous regularization and Z(¢) is the multiplier
ideal sheaf, locally generated by holomorphic function f such that | f|*e~? is integrable.
The envelope P[¢] is studied in [91]. The envelope P[¢]; is studied in [89], [90]. A
potential ¢ € Psh(X,w) is called a model potential if ¢ = P[¢p], and it is called a 7-
model potential if ¢ = P[¢];.

In fact, for any ¢ € Psh(X, w), P[¢]; is amodel potential. Indeed, since P[¢]; < O,
then P[¢]; < P[P[¢];]by the definition of P[-]. On the other hand, we have P[P[¢];] =
lim-_, , P(P[¢]; + C,0), where

P(u,v) :=sup{w € Psh(X,w) | w < min(u, v)} (4.77)

for any u,v € Psh(X, w). Then we obtain that aP[¢]; and aP[P[¢$];] have same mul-
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tiplier ideal sheaves for all @ > 0 since multiplier ideal sheaves are stable under tak-
ing increasing limits by the strong openness of multiplier ideal sheaves [92]. Hence
P[P[$];] < Plp];. We have P[P[¢];] = Pl¢];.

As aresult, if ¢ is T-model then it is automatically model, but not vice versa.

A useful characterization of 7-model potential is the following result,
Theorem 4.7 ([89]""e°*™ 14) et (X, L) be a polarized manifold and w be a Kihler
metric in ¢;(L). Suppose T is a holomorphic vector bundle of rank s on X. Then for any
¢ € Psh(X, w), we have

) | k s . s "
I}Lngo ﬁh X, TQL"Q® IL(ke)) = HJXwP[¢]I > HJXw‘l" (4.78)

Moreover, if Ix wz) > 0, then equality holds iff ¢ is ZT-model.
Remark 4.3. Later, Darvas-Xia [93] generalized this result to the case of pseudo-
effective line bundles.
We denoted by Psh™°9¢! (resp. Psh%’[ odely the space of model potentials (resp. I-
model potentials) in Psh(X, w).
Definition 4.12. A test curve isamap y =y, : R — Psh™°?! y {—c0} such that
(1) y, is concave in e,

(i1)  is upper semicontinuous as a function X X R — [—o0, 00).

(iii) lim,_,__ w, =0in L'.

(iv) w, = —oo for r large enough.
Setr* :=inf{r € R | y, = —c0}. We say y, is normalized if r* = 0. The test curve y,
is called bounded if w, = 0 for r small enough. Let r~ := sup{r € R | w, = 0} in this
case.

Definition 4.13. The Monge-Ampére energy of a test curve y, is defined as

+

E(y,) :=r++ljr (J a)g —J a)"> dr. (4.79)
Vi \Ux 7 Jx

A test curve y, is called of finite energy if E(y,) > —o0. We denote by 7C!(X, w) the
set of finite energy test curves.

There is a natural relation between test curves and psh geodesic rays by the Legendre
duality.
Definition 4.14. Let £ € R'(X, w), the Legendre transform of ¢ is defined as

7. :=inf(£, —tr), reR. (4.80)
>0
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Let y, € TCY (X, w), the inverse Legendre transform of y, is defined as

v, =sup(y, +1tr), t=0. (4.81)
reR

The following result gives a one-to-one correspondence between geodesic rays and
test curves of finite energy.
Theorem 4.8 ([89]T"e°®™ 3.7 ' The Legendre transform and inverse Legendre transform

gives a bijection between R! (X,w)and TC ! (X,w). Forany 7 € R! (X, w), we have
supty =rt (4.82)
X
and
E'™(¢) = E@). (4.83)

Moreover, under this correspondence, R® corresponds to the set of bounded test curves.
Forany £ € R™, theninfy £, =r".

Definition 4.15. A test curve y, is called an I-model test curve if y, is T-model for any
r < rt. We denote by TC; (X, w) the set of T-model test curves of finite energy.
Theorem 4.9 ([89]"e°r®M 3.7 ' The Legendre transform and inverse Legendre transform
gives a bijection between R . (X, ) and T C}(X , ).

Let y be a real smooth (1, 1)-form on X, for any y, € TC Y(X, w), one defines the
x-twisted Monge-Ampere energy as

-
E,(v.) := r+§ L{ " Ay + % Lo <L ol Ay - L{ "' A ;(> dr. (4.84)
When y = —Ric(w), we call E W) the Ricci energy of y,.
In [90], the author computed the twisted Mong-Ampére energy of the Legendre trans-
form of a maximal geodesic ray.

Theorem 4.10 ([90]"e°em6.7) " Forany £ € RL (X, w), then we have

max

E, (Z,)=(E) (). (4.85)
Example 4.2. Let # be a filtration of R and r € R, then one defines
* 1 = -
v = sip <Esup {1og 512, t 5 € PRy, sup sl < 1}) , (4.86)

89]The0rem 3.11

where “*" is the upper semicontinuous regularization. By [ , W, isa IT-model

test curve.
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Chapter 5 Valuative stability

In this chapter, we introduce the valuative stability of Fano varieties and polarized
varieties. Firstly, Let us fix some notations.

Let (X, L) be apolarized variety, let # : Y — X be a surjective birational morphism.
Definition 5.1. A prime divisor F C Y for some birational model Y over X is called a
prime divisor over X. Denote by PDiv,y the set of all prime divisors over X.

One can view F as a divisorial valuation ord; on X, defined on the function field of
X. In particular, we can always assume that Y is smooth by taking a resolution of singu-
larities. Since the information of the valuation associated to F, which we are interested
in, does not change under the resolution of singularities, see [94]Remark 223

Definition 5.2. For any F € PDiv,y, the log discrepancy A y(F) is defined to be

For any effective Q-divisor D such that Ky + D is Q-Cartier, the log discrepancy
Ax.p)(F) 1s defined to be

Ax py(F) :=1+ordp(Ky — 7*(Ky + D)). (5.2)

Note that the log discrepancy is well-defined, since we always assume that the canon-
ical divisor Ky is Q-Cartier.
For any prime divisor F over X and x € R, one can define a subspace H %X, mL-

xF)c H(X,mL) by the identifications
H(X,mL — xF) := HYY,ma*L — xF) c H'(Y,mz*L) = H(X,mL). (5.3)
Then we denote
Vol(L — xF) = Vol(z*L — xF). (5.4)

For simplicity, we always omit ™.

5.1 Valuative criterion on Fano varieties

Let X be a Q-Fano variety, which means that the anticanonical divisor —K y is ample

Q-Cartier divisor and A y(-) is always positive on PDiv,y (the so-called kit singularity).
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Fujita [22] and Li [24] define a numerical invariant

1 [c9)
Px(F)=Ax(F)— J Vol(—Ky — xF)dt, (5.5)
X X Ko Jo X
for all F € PDiv,y. We also denote
1 (o]
Sy(E) := J Vol(—Ky — xF)dt. (5.6)
X —Ko" o X

Given a sufficiently divisible m € N, a divisor D ~g —K is called an m-basis type

Q-divisor if there exists a basis {sy, -, Sdm} of H(X, m(—Ky)) such that

dm
D= mzlvm X050, (5.7)
Set
6,,(X) :=minf{lct(X; D) | D ~q —K}y is m-basis type divisor}, (5.8)
where
let(X, D) :=max{c € Ry | Ax.p) = 0}. (5.9)

In [23], the authors define a stability threshold

6(X) :=limsup 6,,(X). (5.10)

m-—o0
In fact, it is shown in [95] that the limsup is limit and
Ax(F)

lim 6,,(X) = .
ml—l;lgo m( ) Fell)lll)iV/X Sx(F)

(5.11)

The way of computing 6(X) as the infimum of the log canonical thresholds for a special
kind of complements is important both conceptually and computationally, as it connects
to more birational geometry tool.
Theorem 5.1 ([22], [24], [23], [95], [25]). A Q-Fano variety X is
(i) K-semistable if and only if gy (F) = O for all F € PDiv,y, ifand only if § > 1;
(1) K-stable if and only if gy (F) > 0 for all F € PDiv,y;
(ii1) uniformly K-stable if and only if fy(F) > €Sy (F) forsome € > Oand all F €
PDiv,y, if and only if 6(X) > 1.

Remark 5.1. (i) Inthe above definition of #y and 6(X), one can also obtain a numer-

ical invariant if one replaced —K y by a ample Q-divisor L as follows,

Ay (F)Vol(L
(L) = inf “xIVolh) (5.12)
FEPDIV/X SL(F)
which is used to test the Ding-stability (see [22]).

(i1) Very recently, Liu-Xu-Zhuang [32] showed that K-stability is equivalent to uniform
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K-stability.
(i11) When a Fano variety X is uniformly K-stable, then the automorphism group Aut(.X)

1s discrete.

5.2 Valutaive stability of polarized varieties

In this section, we review the f-invariant defined in [34] and state the definition of
valuative stability.

In [34], Dervan and Legendre computed the Donaldson-Futaki invariant of the test
configuration associated to a dreamy divisor for a polarized variety and obtained a new
numerical invariant, which generalizes Fujita’s original f-invariant. Then they show
that valuative stability for dreamy divisors is equivalent to K-stability for integral test

configurations. Here an integral test configuration means that its central fiber is integral.

For any ample divisor L, one defines the slope of (X, L) to be

—K . Ll’l—l

For any F' € PDiv,y, Dervan-Legendre defined

pr(F) := Ax(F)Vol(L) + nu(L) Jﬂo Vol(L — xF)dx + J+oo Vol'(L — xF) K ydx,
’ ’ (5.14)
where
Vol(L — xF) :=Vol(z*L — xF), (5.15)
and
Vol'(L —xF) Ky := % ZZOVOI(E*L —xF +tr*Ky). (5.16)

For simplicity, we always omit 7* in the above notations. It follows from Theorem 3.1

that the notation Vol' (L — xF). Ky is well-defined for any L € Big(X) and F € PDiv,y.

It is straightforward that f; (-) depends only on the numerical equivalence class of L.
There are three numerical invariants on the space of prime divisors over X. Roughly

speaking, these can be viewed as norms. For any F € PDiv,y, we set

+00
Sp(F) = J Vol(L — xF)dx, (5.17)
0
and
Jp(F) :=Vol(L)r, (F) — Sp(F). (5.18)
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where 7 (F) is the pseudo-effective threshold of F with respect to L, defined by
7, (F) :=sup{x € R| Vol(L — xF) > 0}. (5.19)

Note that our notation S;(F) is different from the usual one, which is equal to
S (F)/Vol(L). But just for convenience, we use this notation.
Lemma 5.1. When L is ample, for any prime divisor F, z; (F), S; (F) and j; (F) have

the following relations

1 .
— VoL, (F) < j1(F) < —Vol(Lyz, (F). (5.20)
and
1
— 7 Vol(L)z,(F) < S1.(F) < — Z -Vol(L)7y (F). (5.21)

The invariant j; (-) can be viewed as a norm corresponding to non-Archimedean
functional J™* and S;(-) corresponds to I™A — JNA see [34]5¢ction2 " 133] and
[19]3¢ction 72 The proof of this lemma is essentially same as that of Fujita [96] in Fano
L = —K case, also see [95]Proposition 3.11
Proof of Lemma 5.1 We only need to show (5.21). The first inequality of (5.21) is given

by the concavity of the volume function, which gives

x n
Vol(L — xF) > Vol(L) <7L(F)> . (5.22)
It follows that
1
S;(F) > P 1Vol(L)rL(F). (5.23)

The second inequality is proved in [96]77Position 2.1 (In [96], L = —K ., but this condition
is not used in the proof). i

For any L € Amp(X), we define two numerical invariants:
s(L) :=sup{s € R| — Ky — sL is ample}, (5.24)
and
S(L) :=inf{s € R|Ky + sL is ample}. (5.25)

By definitions of s(L) and §(L), we have u(L) > s(L) and u(L) < 5(L). Indeed, if one
assume that —Ky — u(L)L is ample, then

0<(—=Ky —pu(L)L) - L" " =(=Ky - L' — y(L)L")

_ o yn—1
= <—KXUL — ﬂ(L)) L (5.26)
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This leads to a contradiction. It follows that (L) > s(L). Another one is similar.
We state the following useful lemma (see [34]C°ay 311y "and use this lemma re-
peatedly later in the thesis,

Lemma 5.2. For any big divisor L € N'(X) and any prime divisor F over X, we have

t(F) 1 (F)
J n{((L — xF)Y"™"Y-Ldx = (n+ 1)J Vol(L — xF)dx. (5.27)
0 0

Proof. Using the integration by part and Theorem 3.1 we compute

ro n{(L — xF)"™"Y-Ldx = J %

0 0
_r’i
o dt

=n[ Vol(L—xF)dx+]' 4
0 0 dt =

0VOl(L —xF +1tL)dx
1=

X
141

((1 +1)"Vol(L — F)> dx

=0

Vol(L — X~ F)dx
0 1+1¢

=X © ©
= nJ Vol(L — xF)dx +J' —
0 0 ds

Vol(L — sF)(—x)dx
§=X
=n| Vol(L—xF)dx+ J (=x)dVol(L — xF)
(lo 0
=n| Vol(L - xF)dx + (-x)Vol(L - xF)|>_,
JO

+ Vol(L — xF)dx
JO

(e}

— i+ 1)J Vol(L — xF)dx. (5.28)
0

This completes the proof of Lemma 5.2. |

By this lemma, we can re-write f as
Br(F) =Ax(F)Vol(L) + (nu(L) — (n + 1)s(L)S (F)

+o0
- J Vol'(L — xF).(=s(L)L — Ky)dx, (5.29)
0

or
PL(F) =Ax(F)Vol(L) + (nu(L) — (n + 13(L))S (F)

+o0
+ J Vol'(L — xF).(5(L)L + Ky)dx. (5.30)
0

In fact, when (X, L) = (X, —Ky), then we have

Pk, (F)
+00 +00
Vol(-Ky — xF)dx — J Vol'(-Ky — xF).(—K y)dx

=Ay(F)Vol(=K ) + nJ
0

0
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+o0
=Ayx(F)Vol(—Ky) + nJ Vol(-Ky — xF)dx — (n+ I)J Vol(-Ky — xF)dx
0 0

=Vol(~K y)fx (F), (531)

+oo

where we have used Lemma 5.2 for the second equality. Thus the f; -invariant is a gen-
eralization of Fujita’s invariant to arbitrary polarized varieties.
Definition 5.3. Forany L € Amp(X), (X, L) is called

(1) valuatively semistable (resp. over dreamy divisors) if
pr(F)=0 (5.32)

for any (resp. dreamy) prime divisor F over X

(i1) valuatively stable (resp. over dreamy divisors) if
Br(F)>0 (5.33)

for any non-trivial (resp. dreamy) prime divisor F over X, in which the non-trivial
prime divisor F means that the divisorial valuation associated to F is non-trivial;
(ii1) uniformly valuatively stable (resp. over dreamy divisors) if there exists ane; > 0

such that
BL(F) 2 e Sy (F) (5.34)

for any (resp. dreamy) prime divisor F over X.

Remark 5.2. (i) Note thatin [34], valuative stability means f; satisfies the demanded
inequality for all dreamy divisors (see [34]P¢Mition 2.6y "If g is nonnegative for all
prime divisors over X, it is called strongly valuatively semistable in [34].

(11) In [34] the authors use the norm j; (+) to define uniformly valuative stability. By
Lemma 5.1, then j; and .S are equivalent.

In [34], the authors showed a partial equivalence of the valuative criterion.
Theorem 5.2 ([34]). K-stability with respect to integral test configurations < valautive
stability over dreamy divisors.

Dervan-Legendre [34] also gave a sufficient condition involving the §-invariant (see
Remark 5.1) of uniformly valuative stability.

Corollary 5.1. Suppose that
o(L) + nu(L) I
n+1
is effective, then (X, L) is uniformly valuatively stable.

+ Ky (5.35)
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Proof. We set
(L) :=inf{s € R | Ky + sL is psef}. (5.36)

It follows that 7(L)L + Ky is psef since the psef cone is closed. By the definition of

o-invariant (see Remark 5.1), we have
Ax(F)VoI(F) = 6(L)S(F). (5.37)
By Lemma 5.2, we can re-write
PL(F) =Ax(F)VOl(F) + nu(L)S(F)

+ J°° Vol (L — xF).(z(L)L + Ky — t(L)L)dx
0

=Ax(F)Vol(F) + nu(L)S(F) = (n + 1)7(L)S(F)

4 ro Vol'(L = xF).(x(L)L + Ky)dx
0

Z(0(L)+nu(L) — (n+ D)r(L)S(F) + J Vol'(L — xF).(z(L)L + K x)dx,
0

(5.38)
where we have used (5.37) for the third inequality.

Since (L)L + Ky is psef, then there exists a sequence {D j} of effective divisors

such that
[D;] = [+(L)L + Kx]. (5.39)
Since the positive intersection product ((L — xF)"~!) is 1-cycles, then we have
(L=xF)"')-D; - (L—xF)"")y - (z(L)L + Ky). (5.40)

On the other hand, (L — xF)"!) intersecting with an effective divisor is non-negative

since it can be computed by the restricted volume (see [71]7°"™ B). Thus, we have
(L-xFy"-D;>0. (5.41)
It follows that
(L =xF)" . (z(L)L + Ky) > 0. (5.42)
We obtain
BL(F) > (5(L) + nu(L) — (n + De(L)S (F). (5.43)
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Since
L L
o) i)y (5.44)
n+1
is effective, then it is psef, i.e.,
L L
(L) < M (5.45)
n+1
We obtain
6(L)+nu(L)— (n+ 1)z(L) > 0. (5.46)

Together with (5.43), then (X, L) is uniformly valuatively stable. |

In this paper, we are interested in the openness of uniformly valuative stability. Our
main theorem is stated as follows,

Theorem 5.3 ([40]"¢°®™ 1) The uniformly valuative stability locus
UVs = {[L] € Amp(X) | (X, L) is uniformly valuatively stable} (5.47)

is an open subcone of the ample cone Amp(X).
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Chapter 6 Proof of the main theorems

6.1 Openness of uniformly valuative stability

In this section, we give a proof of Theorem 5.3.
We first give a rough idea of setup: Fix an ample R-divisor L, which is uniformly

valuatively stable, and choose a constant £; > 0 such that
PL(F) 2 €S (F) (6.1)

for any prime divisor F over X. Our goal is to show that there exists a small open neigh-

bourhod U of L in Amp(X) such that, forany L’ in U there is a constant §;, > 0 satisfying

Pr(F) = 67,81,(F) (6.2)
for all prime divisor F over X.
To define such an open neighbourhod of L, we fix any norm || - || on N'(X) and
define an open subset
U, :={L" € Amp(X) | [L' — L] < &}. (6.3)

If necessary, we shrink this neighbourhod, i.e. shrink &.

It suffices to prove following these two estimates

Pri(F) =B (F) 2 —f(e)S(F) (6.4)
and
S (F) = s (e)S/(F) (6.5)

for any prime divisor F over X, where f : RT - RT and s~ : Rt — R* are continuous

functions with f(¢) - 0 and s™(¢) —» 1 as € — 0. Indeed,
P (F) =p(F) + fr/(F) = pr(F)
e, S (F) - f()Sy/(F)
> (ep57(e) — f(e)) Sp/(F). (6.6)
Lemma 6.1. For any L € Amp(X), there exists a small constant € > 0, such that for
any L' € U, satisfying the following inequality
sT(©)S(F) < Sp(F) < s7(€)Sp/(F) (6.7)
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for any F € PDiv,y, where s~ : R* - R* and s : R* — R¥ are continuous functions
with s7(¢) - 1 and st(¢) = 1 as e — 0. Moreover, s (¢) < 1 and s (¢) > 1.
Proof. Forany L’ € U,, we write itas L' = L + ¢ H for some R-divisor H in NI(X).

For any s > 0, we can write

1
LteH = —) <L+S(L+( +S)8H)>, (6.8)
1+s S
and set
L=+ 9FYy (6.9)
S

Then by choosing s small enough (determined later), which depends on £, we can assume

that both (1 + s)L — L, and L — (1 — s)L are big. Indeed,

(1+s)L—Ls:s<L— a J;ZS)5H>, (6.10)

1/4

for instance, take s = €, then (1 + s)L — L, is big when ¢ is small.

Thus we have

+00
S;/(F) :J Vol(L" — xF)dx
0
+o0
=(1+ s)_"J Vol(L + sL; — (1 + s)xF)dx
0
+o0
>(1+5)™" J Vol(L + (s — s?)L — (1 + s)xF)dx
0
2 n r+4o00
_ <M [ Vol(L — ixF)dx
1+s 0 1+s—s2
2 n+1
(M) s o
On the other hand, similarly, we have
S L+s+s52\"™"
p(F) <[ ——— S (F). (6.12)
1+s
By taking
el2 n+l 12 n+l
p— _ o« + _ <
s (e)-(l 1+51/4> and s (6)—<1+1+61/4> , (6.13)

we finish the proof of Lemma 6.1.
|
Comparing with the openness of valuative stability in Fano case ([39], [36]), it fol-
lows from the definition formulated in Section 5.1 that Lemma 6.1 suffices to show the

openness of original f-invariant.
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But in the polarized case, the f-invariant is more complicated involving the deriva-
tive part. A main difficulty in this case is to control the difference of the derivative part
in the expression of f-invariant for two nearby ample divisors. It is hard to control the
difference for all prime divisors in general. In fact, we do not need to show the inequality
(6.4) for any prime divisor F over X. By the definition of uniformly valuative stability,
we introduce a subset of prime divisors over X as in the next definition, on which it is
clearly sufficient to test uniformly valuative stability.

In addition, the log discrepancy has no control generally. By considering the deriva-
tive part of f-invariant together with the log discrepancy (see (6.15)), we obtain a partial
control of f-invariant (see Theorem 6.1), which is enough to show our main theorem.

Definition 6.1. For any L € Amp(X), let
DY := {F € PDiv,y | f,(F) < C S (F)}, (6.14)

for some constant C; > 0 (determined later).

It follows that we only need to prove the inequality (6.4) for any F € D‘z‘}. Since

when F & D‘f} , it automatically satisfies the condition of uniformly valuative stability.
Then for any F € D‘id,, we have
+00
Ax(F)Vol(L") + J n{((L' = xF)"™ 'Y - (Ky + 5(L")L")dx
0
<(Cpr = nu(L") + (n+ D3(L")) Sy (F), (6.15)

where we have used the Lemma 5.2. Now we choose C;, > 0 such that C;, — nu(L") +
(n+ 1DS(L") > 0.

We establish the technique theorem to show the main theorem 5.3.
Theorem 6.1 ([40]™"¢°®M 10) " Given a divisor L € Amp(X), there exists a constant
g¢ > 0 and a continuous function f : R* — R* with lim,_, f(¢) = 0, such that for any

0 <e<¢pandany L' € U,, the inequality

P (F) = Br(F) 2 —f(e)S(F) (6.16)

is satisfied for all F € D‘i‘j,. Moreover, the choice of f only depends on X and L.

We first show the estimate of the second term of f-invariant, i.e. u.S.
Lemma 6.2. For any L € Amp(X), there exists a constant £, > 0 and a continuous
function 2 : RY - R™ with lim,_ h(e) = 0, such that for any 0 < £ < ¢, and any
L’ € U, the inequality

nu(L)S;/(F) = nu(L)Sy (F) > —h(e)nS,(F) (6.17)
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is satisfied for all F € PDiv,y. Moreover, the choice of 4 only depends on X and L.

Proof. For simplicity, we denote

s \" 2 \"
=(1- < land =1+ > 1. 6.18
s-(n) < 1+s> and ..(n) ( 1+s> ( )
Forany L' € U,, we can write
L'=L+¢H = (L+sLy) (6.19)
I+s

in the same way as the proof of Lemma 6.1, for some R-divisor H and L, in N L(X).
Thus we have
Vol(L") =(1 + s)™"Vol(L + sL,)
>(1+ 5)™"Vol(L + (s — s*)L)
=s_(n)Vol(L). (6.20)
Similarly, one obtains
Vol(L") <s,(n)Vol(L). (6.21)
The proof falls naturally into two cases.
(1) When (L") > 0, then we compute
nu(L)S ./ (F) = nu(L)S, (F)
2nS (F)(s™(e)u(L") — u(L))

_ - Ky @) oKy L
=nS (F) <(S (€) = Du(L") + Vol(L') B Vol(L) )

>nS, (F)( (s Du(L! Ky - (L)' —Ky-L"!
2nSp(F)| (s7(e) — Du(L") + s, (mVol(L) B Vol(L)

_KX . (Ll)}’l—l

>nS; (F) <(s_(£) = Du(L) + (sp (™' = 1) Vol(L)

1 _ . =1 _ ¢ L rn-1
+V01(L)( Ky - (L") (—Kx)- L ))
2nSy (F) <(S‘(£) — Du(L") +( L _ Ds, (m)u(L")
s, (n)
- (=K )-eH((L’)"‘2+(L’)”‘3-L+---+L”‘2)>
Vol(L) X
>nSL(F)((57() = 5, (Mm(L)
1 _ . n—2 n=3 n—2
+EV01(L)(( Ky)- H(L"Y"™ "+ (L") L+--+1L )>. (6.22)
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In general, we do not know the sign of
1
Vol(L)
But we can cancel it directly if it is nonnegative. Therefore, without loss of gener-

(=Ky) - H(L)"™ 2+ (L")"3 - L+ -+ L") (6.23)

ality, we may assume that it is negative. Then

nu(L")S . (F) = nu(L)S(F) 2(—h,(¢) — g(e))nS(F)
>(—hy(e) — g(e)s™(e)'nS . (F),  (6.24)

where

1
“Vol(L)
which is a polynomial in € with degree n—1 and g(0) = 0, whose coefficients depend

on—Ky, L, H, and the leading term is Vol(L)_l(—KX)~H”_1, andh, : RT - R*

gle) = — (=Kx)- H(L)"™ 2+ (L") - L+ +L"?) (625)

is a continuous function with i () — 0 as € — 0, which depends on u(L").
In fact, A, is independent of the choice of L’. Since g is a polynomial with degree
n—1and L' can be represented by a basis of Nef cone (see the following Lemma
6.3), then the choice of g only depends on X and L.
(2) When u(L") < 0, the computation is similar. We omit it.
This completes the proof of Lemma 6.2 by taking 7 = (h; + g)s ()7l |
Lemma 6.3. There exists a constant a > 0, which depends on € and L, such that

(I1-aL<L <(+a)lL (6.26)

for any L' € U,. Moreover, such a can be chosen as small as we wish by choosing e
small.

Proof. Forany L' € U,, we write itas L' = L + H for some R-divisor H in N'(X)
with ||H|| < €. Set p :=dimp NY(X). Since L is ample, there exists a basis (4}, -+, A))
of N1(X) with each A, in Nef(X), and there exists some ¢, - , 1, € R, such that L =
Zle t;A; with Zle t; = 1. Setty = min; #; € R,,. We may assume that the norm || - ||

is given by

p
2 s
i=1

p
‘= Z Is;]. (6.27)
i=1

54



Chapter 6  Proof of the main theorems

Set H=Y" rA; with |H|| <& (ie. X/_, |r;] <&). Then we have
P p P . .
L'=L+H=Y(+r)A < ;(t,- +e)A; = ;(ti oA <A+ ) 2tk

i=1 i

also
p

P P P
L'=L+H=YW+mA> Y (=)A= Y (= ~i)A; > (1= 5) Y 1A,

i=1
(6.29)
The proof is completed by taking a = &/t), where 7, = min, t;. |
Remark 6.1. Consistent with the notation in Section 3.2, " < " means that their differ-
ence is a psef class. In fact, (1+a)L— L' and L’ — (1 — a) L are nef according to the proof
of Lemma 6.3.
We now turn to the proof of Theorem 6.1.

Proof of Theorem 6.1 Forany L" € U,, we can write

L'=L+eH =< L (L+sL,) (6.30)

+ s
in the same way as the proof of Lemma 6.1, for some R-divisor H and L, in N ! (X) such

that (1 + s)L — L, and L, — (1 — s)L are big when ¢ is small enough, where s = g4,

We divide into following these two cases,

(1) One assume u(L’) > 0, then §(L') > 0.

Pr(F) = p(F)
=Ax(F)(Vol(L") = Vol(L)) + nu(L")S+(F) — nu(L)S (F)

r+00 +o0

+ n((L' = xF)"™ 1) - (Ky + §(L")L")dx — S(L')J n{(L' —xF)"""\-L'dx
JO 0
r+00

- n{((L — xF)"1Y-(Ky + 5(L")L")dx

JO
r+00
+ n{((L — xF)""')-(Ky + §(L")L")dx
JO
r+00
- n{((L — xF)"'y . Kydx
JO

>nu(L")S1/(F) = nu(L)SL(F) + Ax (F)Vol(L')(1 = s_(n)™")

—E(L')J

0

+o0 +00

n((L' —xF)"" Y. L'dx + §(L’)J' n{(L — xF)"'y- L'dx
0
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+ rw n(((L' —xF)"'y = (L = xF)" ")) «(Ky + 5(L")L")dx. (6.31)
By Leomma 6.3, we can take a small positive constant a (recall a = €/t,) such that
(I1-a)L< L' <(1+a)lL, (6.32)

forany L' € U,. Then one obtains
(1—-aL-xF<L —xF<({(+a)lL—-xF. (6.33)

Therefore, by the continuity and homogeneity of the positive intersection product

(see Proposition 3.1 or [71]Proposition 2.9) “we haye

(1-a)" YL -—"—=F)"" (L -xF)" )y <A +a" (L~ —=—F)".
1—a 1+a
(6.34)
Since Ky + S(L")L’ is nef, we have
(1—a"~ (L - 1f—aF)'H) (Ky +5(L")L")
(L' = xF)"™") - (Kx +5(L")L")
<A +a)" (L - —=—F)y"y - (Ky +3(L")L"). (6.35)
14+a
It follows that
+o0
J n((L' = xF)"'y - (Kyx + 5(L')L")dx
0
+o0
>(1—a)"! J n((L = 7= F)'")-(Kx +3(L))L')dx
. —
+0o0
=(1 — a)" J n((L = xF)"'Y - (Kyx + 5(L")L')dx. (6.36)
0

Thus, we obtain

+00
J n(((L' = xF)"'y = (L = xF)"™")) «(Ky + §(L")L")dx
0

+00

>(1 - (1 - a)_")J n{(L' = xF)"""y - (Kyx + 5(L")L")dx. (6.37)
0

Recall s = £!/*, when we choose & small enough, then a (= elt(, see Lemma 6.3)

can be chosen small enough, such that
l-s_m'<s1-(1-a™ (6.38)
Then, we obtain

Ax(F)Vol(L")(1 = s_(m)™h
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+0o0
+J n((L' —xF)"'y = (L = xF)" ")) (Ky + 5(L")L")dx
0

+o0
>(1—s_(n)™H <AX(F)V01(L’) + J n{((L' = xF)" 1) . (Ky + §(L’)L’)dx>
0

>(1—s_(m)™ (Cpr —npu(L") + (n + DS(L")) Sp/(F) (6.39)

where we have used (6.15) and Lemma 5.2 for the second inequality.

Since L’ is ample, by (6.34), we have

(1-a YL —"=F)"Y. L' (L' -xFy"!). L’

1—a
<A +a)" (L -—2-Fy"'y. L' (6.40)
1+a
Then one obtains
+00 +oo
J n((L' = xFY"'Yy - L'dx < J (1+a)" 'n((L - —=—F)"1y. L'dx
0 0 1 +a
+oo
=(1 +a)”J n{(L —xF)Y" 1. L'dx. (6.41)
0
It follows that
+00 +oo
§(L’)]' n{(L —xF)Y" Y. L'dx — §(L’)I n{(L' —xF)"!y. L'dx
0 0
+o0
>5(LHY(1 +a)™" - I)J n{((L' —xF)"!Y. L'dx
0
=5(L"Y(1+a)™" = D(n+ 1)S;,(F). (6.42)

Note that here we have used §(L’) > 0 and Lemma 5.2.
Combining (6.31), (6.39), (6.42), and (6.17) , we have
B (F)— B (F)

> — h(e)nS ./ (F) + ((1 —s_m™N(Cpr = nu(L") + (n + DI(L))

+(n+ DL +a) " - 1))SL,(F)

2 — f(e)Sp(F), (6.43)
where f : RT — R is a continuous function with f(¢) — 0 as € — 0, which
depends on (L"), 5(L") and C;, and intersection numbers (=K ) - (L)% - L"~17%
fork=0,---,n—1.
By definition, we know that u(L") and §(L") are continuous with respect to L’.

Thus, we can choose C;, continuously depending on L’. Therefore, the choice of

f only depends on X and L.
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(2) One assumes u(L') < 0, then s(L") < 0. We use the same idea of case ((1)).

P (F)— Br(F)
=Ax(F)(Vol(L") — Vol(L)) + nu(L")Sy /(F) — nu(L)S; (F)

r+00 +00
+ n{((L' = xF)"™ 'Y . Kydx + J n{((L' = xF)" (=K y — s(L")L")dx
JO 0
r+00
- n{((L' = xF)" 1)(=Ky — s(L")L")dx
JO
r+00 +o0
+ n{(L — xF)"_l)-(—KX —s(L"YLNdx + s(L’)[ n{(L — xF)Y"'y. L'dx
JO 0

2nu(L")S 1 (F) = nu(L)S(F) + Ax(F)Vol(L")(1 = s_(m)™")
+00
—s(L") J

n(<(L' —xFy™ly — (L - xF)"—1>> . L'dx
0

+0o0
+ J n(((L—xF)"1y = (L' =xF)" 1) (-Kyx —s(L')L')dx.  (6.44)
0
By (6.34) and Lemma 5.2, we have

+o0
J n(((L—xF)y"'y = (L' = xF)" 1)) «(—Kyx — s(L")L")dx
0

+oo

>(1+a)™" - 1)J n{((L' = xF)" 1Y(=Ky — s(L")L")dx
0
+oo

=(1-1+ a)_”)J n{(L' — xF)”_l) - Ky
0

+((1+a)™ = D(=s(L"))(n+ 1)S;,(F). (6.45)

Since F belongs to D‘f} , Ohe can obtain

Ax(F)Vol(L")(1 = s_(m™") 2(1 = s_(n)"")(Cps — nu(L")) S/ (F)
400
—(1- s_(n)_l)J n{((L' = xF)Y" 'y . Kydx.
0

(6.46)

Since L’ is ample, by (6.34) and Lemma 5.2, we obtain
+o0

(—S(L/))J

n<<(L/ _XFY=y — (L - xF)"—1>> . L'dx
0

+0o0
2(=s(L)(1 = (1 - a)_”)J n((L' = xF)"™") - L'dx
0

=(=s(L")A = (1 —a)™)(n+ 1)S/(F). (6.47)
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In addition, we have the following natural lower bound,

+0o0
J n{((L' = xF)" !y . Kydx

0
+o0 +o0

=J n{((L' = xF)" 1Y - (Ky + 5(L")L")dx — §(L')J n{(L' —xF)"" Y. L'dx
0 0

> —3(L)(n+ 1)S;/(F). (6.48)

Combining (6.17) and (6.44)-(6.48), we have

Pr(F) = pL(F)
> — h(e)nS;(F) + <(1 —s_(m)"NCy — nu(L")
+((1+a)™ = Ds(L N+ 1D + (=s(L)A - (1 —a)™)(n+ 1)>SL’(F)
+o0

+ (1 —(l+a)™"+s_(n) ' - 1) J n{(L' = xF)" 1. Kydx
0

> = hemSL () + (1= s_07)(Cpr = nu(L")
F({+0™ = (=@ =s(L0+ 1) ) Sy (F)
+ (5207 = A+ @7 ) =50 + DS (F)
2 — f(e)Sp/(F). (6.49)

where f : RT — R is a continuous function with f(¢) — 0 as € — 0, which
depends on u(L"), (L"), s(L") and C;, and intersection numbers (—K ) - (L")~ -
L% fork=0,--,n—1.

Similar to case (1), we can choose a continuous function f which only depends on
X and L.

By combining above these two cases, we complete the proof of Theorem 6.1. |

Finally, we finish the proof of the main Theorem.

Proof of Theorem 5.3 For any L € UV's, by Theorem 6.1, there exists a constant £, >

0 and a continuous function f : R* — R* with lim,_, f(¢) = 0, which only depends X

and L, such that for any 0 < € < gy and any L’ € U_, the inequalit
0 y £ q y

P (F) = Bp(F) 2 —f(e)S(F) (6.50)

is satisfied for all F € D‘f}. Since L is uniformly valuatively stable, combining with
(6.6), we have

BL/(F)> (%L ~ 1©) Su(F), (6.51)
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for all F in D‘]i‘i,. It follows that there exists an g, > 0 such that

%L — f(e)>0 (6.52)

forall L € U, and any 0 < € < g, Then for any L € U,, we have
Pri(F)=e€p1Sp/(F) (6.53)

for some constant £;, > O and all F' € Dli‘i. Thus, L' belongs to UVs forany L' € U,.

Finally, by definitions of f and S-invariant, we have
Brr/(F)=Kk"B;,(F), and S,/ (F) = k"8, ,(F), (6.54)

for k > 0. Then R, U, C UVs. Therefore, the uniformly valuative stability locus UVs is
an open subcone of Amp(X). |

6.2 Uniformly valuative stability threshold

As an immediate application of Theorem 6.1 and 5.3, in this section, we show the
continuity of the uniformly valuative stability threshold.
Definition 6.2. For any L € Amp(X), the uniformly valuative stability threshold of L is
defined to be

C(L) :=sup{x € R | f,(F) > xS, (F) forany F € PDiv,y }. (6.55)

In fact, when (X, L) = (X, —Ky) is Fano, we have {(L) = 6(X) — 1. This is the
main motivation to study the {-invariant.

Recall the definition of §-invariant, due to Blum and Jonsson [95],
Ay (F)Vol(L)

S(Ly= inf X1~ (6.56)
FePDiv,y S (F)
Thus, one obtains
Ay (F)Vol(L) > 6(L)S(F) (6.57)
for any F in PDiv,y. By (6.48), we have a natural lower bound
Pr(F) 2 (6(L) +nu(L) — (n+ 1)5(L)Sy (F), (6.58)
1.e.

S(L) =2 o(L) + nu(L) — (n+ 1)3(L). (6.59)

One can take a ¢; > 0 such that 6(L) + nu(L) — (n + 1)S(L) + ¢; > 0. Thus now we set
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Cr :=6(L)+ nu(L) —(n+ 1)5(L) + c¢; > 0 in the definition of D‘]id. We also define
(L) 1= sup{x € R | f,(F) > xS, (F) forany F € D'}, (6.60)
By definition, one obtains
C; = &(L). (6.61)

Lemma 6.4. For any L € Amp(X), we have

(L) = ¢"(L). (6.62)
Proof. By definitions of ¢"4(L) and ¢ (L), we have
(L) < ML), (6.63)
Forany F ¢ DY, then
BL(F) > C.SL(F) > {"(L)S L (F). (6.64)

Thus, for any F € PDiv,y, we have
BL(F) = {"UL)S L (F), (6.65)
ie.

¢(L) = (). (6.66)

Theorem 6.2 ([40]7"e°r®™ 13) " The uniformly valuative stability threshold
Amp(X)> L~ ¢(L) €R (6.67)

is continuous on the ample cone.
Proof. For any L € Amp(X) and any € > 0, we aim to show that there exists a small

open neighbourhod U, of L in Amp(X) such that for any L' € U, satisfying
IC(L") = E)] <e. (6.68)
By Theorem 6.1, for any L’ € U, satisfies the following inequality
Pr(F) = B (F) 2 —f(0)Sp:(F) (6.69)

forany F € D‘f} ,

f only depends on X and L. Thus, we have

where f is a continuous function with f(#) — 0 as & — 0. Morcover,

Pr(F) 2E(L)S(F) = f(0)Sy/(F)
=(C(L) + e )SL(F) = e S (F) = f(0)S 1/ (F)
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> ((C(L) +¢p)s™(0) = c15¥(0) = f(6)) Sy (F)
= (L) = (1 = s7(ONE(L) = e (s7(8) = s7(8)) = f(8)) Sy (F)  (6.70)

ud

forany F € D;. Thus one obtains

CL) =LY 2 ¢(L) = ((1 = sTO)E(L) + e (sT(O) —s~(0) + f(0)) . (6.71)
We can take a small enough constant § > 0 such that
(1 =s7(O)S(L) +cp(s7(0) —57(0) + f(0) < e. (6.72)
Thus, we have
C(L") = ¢(L) > —e. (6.73)
On the other hand, by replacing L by L’ and write L = L’ —@H in Theorem 6.1, we have
Pr(F) = Pp(F) 2 —f(0)S(F) (6.74)

forany F € Dlzd, where f is a continuous function with f(8) — 0 as 8 — 0. Moreover,

f only depends on X and L. Similarly, we can compute
BL(F) 2 (S(L)s* @) —cpi (s~ = sTO)™) = f(0)) S(F), (6.75)
for any F € DY. One obtains
CL) =LY 2 C)sT O —epi(s(O) = sT @) - f(0). (6.76)
Then, we have
CL) <L)+ (s7(0) = DE(L) + e (sT(O)s™(0) = D +5%O)f0). (677

One can choose a ¢; depending on L’ continuously since 5(+), u(-) and 3(-) are continuous

on Amp(X). Then we take 6 > 0 small enough such that
(s7(0) = DEL) + e (sTO)s™ (O = 1)+ 57O f(0) < e. (6.78)

Thus, we have
(L) - (L) <e. (6.79)

Together with (6.73), we finish the proof of Theorem 6.2. |
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Chapter 7 Applications of valuative stability

7.1 Valuative stability for transcendental classes

In this section, let X be a projective manifold. We extend the valuative stability to
the Kdhler cone of projective manifolds.

Denote by K the Kdihler cone of X and € the pseudo-effective cone in H (X, R).
The interior £° of the psef cone is an open subcone, whose element is called big.

Recall the definition of the volume of a big class @ in E° (see Section 3.2 or
[72]Deﬁm'tion 3.2)

b

Vol(a) := sup J~ y" >0, (7.1)
Tea X

where the supremum is taken over all Kéhler currents T' € a with logarithmic poles, and
x*T = [E] + y with respect to some modification r : X — X for an effective Q-divisor
E and a closed semi-positive form y (or see [75]Pefiniton 117 for 3 definition in the sense
of the pluripotential theory).

Leta € K be aKihler class of X, for any prime divisor F over X, then Vol(a—x[ F])
is well-defined for some small x > 0. Since z*a may not be Kéhler on Y, but it is still
big. Therefore, by the openness of the big cone E°, we can define the pseudo-effective

threshold of F € PDiv,y with respect to the Kéhler class a as

7,(F) :={x € R | Vol(a — x[F]) > 0}. (7.2)
It follows that the .S-invariant is well-defined,
S,(F) := Joo Vol(a — x[F])dx. (7.3)
Similarly, for any Kéhler class a, we als(()) define
(@) = M (7.4)
a
s(a) :=sup{s € R | ¢;(X) — sa is Kéhler }, (7.5)
and
S(@) :=inf{s € R | —¢;(X) + sa is Kéhler }. (7.6)

We also have s(a) < u(a) < §(a).

In [72], the authors established the perfect theory of the positive intersection product
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of big classes on compact Kidhler manifolds (see Remark 3.1 for the definition).
Theorem 7.1 ([72]™"€°®M 3:5) et X be a compact Kihler manifold. We denote here
by H I;bk(X ) the cone of cohomology classes of type (k, k) which have non-negative in-
tersection with all closed semi-positive smooth forms of bidegree (n — k, n — k).
(1) Foreachinteger k = 1,2, ---, n, there exists a canonical “movable intersection prod-

uct”
Ex X E— Hy(X), (ay, . a) = (@ ay ) (7.7)

such that Vol(a) = (a") whenever « is a big class (see Remark 3.1).
(i1) The product is increasing, homogeneous of degree 1 and super-additive in each
argument, i.e.

<al cee (ajl + aj/_,) ces ak> 2 <a1 eee a} cee ak> + <(x1 cee a}/ ak>. (78)

It coincides with the ordinary intersection product when the a; € K are nef classes.

(ii1)) The movable intersection product satisfies the Teissier-Hovanskii inequality
(g @y ) = () (agn'™. (7.9)

It follows that the f-invariant is well-defined for any Kéhler class. For any a € K,

we define
+o0 400
P (F) := Ay (F)Vol(a)+nu(a) J Vol(a—x[F])dx—J n((oz—x[F])”_1 Y- (X)dx.
0 0
(7.10)
Therefore, we can extend the valuative stability to any Kéhler class,
Definition 7.1. Forany « € K, (X, a) is called
(1) valuatively semistable if
Bo(F) > 0 (7.11)
for any prime divisor F over X;
(11) valuatively stable if
p,(F)>0 (7.12)
for any non-trivial prime divisor F over X;
(1) uniformly valuatively stable if there exists an €, > 0 such that
P (F) > €,S,(F) (7.13)
for any prime divisor F over X.
The positive intersection product (a; - -+ - @,) depends continuously on the p-tuple
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(ay, -+, a,) for any big classes a, -, &, (see the below in [75]Deﬁniti°“ 1'17).

If y 1s psef and a is big, by ((i1)) and ((ii1)) of Theorem 7.1, then we have
Vol(a + y) = Vol(a). (7.14)

A well-known result about the differentiability of the volume function on E°, due to
D. Witt Nystrom [97], is stated as follows,
Theorem 7.2 ([97]™"€°®™ C) " On a projective manifold X the volume function is con-

tinuously differentiable on the big cone E° with

d — nla™ 1
o z=0V01(a +ty)=n{a""") - y. (7.15)

forany @ € £° and any y € H"!(X,R).

Therefore, we have the similar integration by part type formula:

+o0 00
J n{(a — x[F)" ) - adx = (n+ 1)[ Vol(a — x[F])dx, (7.16)
0 0

for any @ € K and any prime divisor F over X.

It follows that these proofs of Theorem 6.1 and Theorem 5.3 can also work for the
Kahler cone. In other words, the openness of uniformly valuative stability also holds on
the Kéhler cone. We summary as follows,

Theorem 7.3 ([40]""€°®™ 3) ' For a projective manifold X, the uniformly valuative sta-

bility locus
UVs = {a € K| (X, a) is uniformly valuatively stable} (7.17)

is an open subcone of the Kéhler cone K.

7.2 Valuative J-stability

Let (X, L) be a polarized manifold and H be an ample line bundle on X. Fix the
Kéhler metrics y € ¢j(H) =: fand w € ¢;(L) =: a.

We consider the following J-equation

tr%)( =c,ie ny A oog_1 = cwg, (7.18)
where
-1
nly y No" Ll
= Jx S 8 CA— nug(L). (7.19)
IX " L

It is well-known that the J-equation is the critical point of the 7, functional, defined
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as follows
J, (@)= E (¢) — cE(¢). (7.20)
Indeed, for a smooth path ¢, € H(w), the derivative of J P 1S
d _ ad)t n—1 n
EJX(¢t>_JX?<nXAw¢t —ccod)t). (7.21)

For each (normal, semiample, dominating) test configuration (X, L), the non-

Archimedean J II}IA functional is defined by
T, L) =(EMYNAN X, L) — cENMNX, L)

1
~ Vol(L)

“H.T" L 1 ! (7.22)
(p L) —nug( )m( ) .

where p 1 X — Xp1 = X.
Definition 7.2. We say that (X, L) is uniform J™-stable (resp. uniformly slope JH -

stable) if there exists a constant € > 0 such that
IpiX, L) 2 NN X, L) (7.23)

for any test configuration (resp. deformation to the normal cone, see Section 7.2.1 for the
definition) (X, L).

Recently, G. Chen [49] showed the existence of solutions of J-equation under a
uniformly numerical condition.
Theorem 7.4 ([49]Tecem 1.1y " T et X be a compact Kéhler manifold. Suppose w, y are

Kahler metrics on X. Let ¢ > 0 be a constant such that

J nwa"_lch o". (7.24)
X X

The following statement are equivalent:
(1) There exists a unique smooth function ¢ up to a constant such that its Kahler form

wy, satisfies the J-equation
tr%)( =c. (7.25)

(i) There exists a unique smooth function ¢ up to a constant such that ¢ is the critical
point of the J,, functional.

(ii1) The J p functional is coercive; in other words, there exists a constant € > 0 and
C > 0 such that

T, (@) 2 eJ($) - C. (7.26)

(iv) (X, [w]) is uniformly J-stable; in other words, there exists a constant € > 0 such

66



Chapter 7 Applications of valuative stability

that
J (X, Q) > eJi(X, Q), (7.27)

for all Kéhler test configurations (X, ) (see [4]]Pefinition 2.10y * where numerical
invariants J} (X, £2) and Jy,;(X, Q) (see [41]Pefinition 6:3)
(v) (X, [w]) 1s uniformly slope J-stable; in other words, there exists a constant € > 0

such that
Jm(X, Q) > eJ[w](X,Q), (7.28)

for any deformation to the normal cone (X, £2) with respect to any analytic subva-
riety Z (see [41]Example 2.11 (ii)).

(vi) There exists a constant € > 0 such that
J (c—(n=peE)’ —py Ao’ 120 (7.29)
v

for all p-dimensional analytic subvarieties V with p = 1,2, .-+, n.
Remark 7.1. (i) When [w] = ¢;(L) and [y] = ¢,;(H), then the numerical invariants
Ji (X, Q) and Jp,,(X, Q) are nothing but T (X, £) and JNA(X, L) resp.

(i1)) When the Chen’s paper [49] was under reviewed, Datar and Pingali [98] re-
moved the technical e-term in (7.29) in the projective case. Later, Song [99]
solved this technical issue in the compact Kdhler case. Then, this solves the
Lejmi-Székelyhidi’s original conjecture [45], which is that the solvability of the

J -equation
tr%)( =c (7.30)
is equivalent to
Jvcwp—prwp_l>O (7.31)

for all p-dimensional analytic subvarieties V with p = 1,2, --- , n.

(ii1)) The equivalence of (i) and (ii) follows from the formula (7.21). The equivalence
of (1) and (iii) is due to [46]. (iii) implying (iv) is due to [41]. It is trivial that (iv)
implies (v). By [45], (v) implies (vi). The main distribution of [49] is to show that
(vi) implies (1).

For convenience, we consider the polarized case, namely, a smooth polarized vari-
ety (X, L) with a ample line bundle H. Motivated by Fujita-Li criterion for the Kdhler-

Einstein equation, we hope to study the uniform J* -stability in terms of valuations.
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For any prime divisor F over X, from the definition of ff; -invariant (5.14), we define

the j-invariant as follows

Jjg(F) :=Sy(F)—c¢S(F), (7.32)
where
+00
— h _ n—1
Sy(F) = Vol D) J'o (L=xF)"""y Hdx (7.33)
and
B 1 +o0
S(F) = VolD) L Vol(L — xF)dx. (7.34)

Similar with §(X)-invariant in Section 5.1, we define the J ¥ -stability threshold as
Sy (F)

> 0. 7.35
FePbiv, S(F) (7.35)

yg(L) 1=

Definition 7.3. We say that (X, L) is
() valuatively J* -semistable if j;(F) > 0 for any prime divisor F over X;
(ii) valuatively JH -stable if j(F) > 0 for any non-trivial prime divisor F;

(i) uniformly valuatively J -stable if there exists a constant £ > 0 such that
Ju(F) 2 €j(F) (7.36)

for any prime divisor F over X.
Obviously, uniformly valuative J H _stable is equivalent to y (L) > ¢ = nug(L).
For any prime divisor F over X, it induces a Z-filtration & on the section ring R,

given by

HYX,kL—-AF) ifiA>0,
FR, = g (7.37)
HOX, L% if 4 <0.

Note that the filtration & is finite generated when F is a dreamy divisor, which corre-
sponds to a test configuration with integral central fiber.

Then & induces a T-model test curve y_, i.e., ¥, = P[y,]; as in Section 4.6, given
by

W, = s{;p (l s{;p {loglslik s € T’k’Rk,sup Is] ke < 1}> , (7.38)
kez, \ k

where “ x " is the upper semicontinuous regularization and 4 is a smooth metric on L such
that ¢;(h) = w. Itis easy to see that r* = 7, (F) by the definition of r*. Moreover, v, = 0

forr <0.
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Claim 7.5. For0 < r < r™, we have
wy,, F) = z“ellfv v(y,,z) > T, (7.39)

where v(y,, z) is the Lelong number of the w-psh function v, at z.
Proof. It is a standard argument by Fekete Lemma. We follow the argument in [90]. For

keZ,y, we set
koo o 2 kz 2
Y, = sup{loglslhk | s € F*' Ry, |s|hk <1} <0. (7.40)

By the multiplicativity of the filtration, we have

RV (7.41)

forall k,m € Z. By Fekete’s Lemma, then y, is the upper semi-continuous regulariza-
tion of the increasing limit t//f/k. By the monotonicity and the upper semi-continuity of

Lelong numbers (see [100]), we conclude

. 1. o
v(y,, F) = ké%t;o m inf{v(log |s|ik,F) | s € F¥R, ). (7.42)
Since v(log Is|2,, F) > r, then we obtain v(y,, F)>r. |

hk>
Since y, is I-model, by Theorem 4.7, we have

o = lim B ROX, LK @ T(ky,)
X Yy k=00 kn ’ r

|
> lim %hO(X, F*¥R,) = Vol(L — rF), (7.43)

k— o0
since every element in FkrRk is obviously square integrable with respect to ky,..

Lemma 7.1. For any prime divisor F over X and ¢ € Psh(X, w) satisfying

v(g, F) > x. (7.44)
Then we have
Vol(L — xF) > J wg (7.45)
X
and
(L-xFY"YH> J wg—l Ag. (7.46)
X

Proof. Fix a smooth hermitian metric 2 on Oy (F), let sy be the defining section of
Oy (F). Since v(@, F) > x, then there exist C > 0 such that

m*¢ < xlog|spl; + C. (7.47)
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We set
w, :=—dd‘logh € ¢;(Oy(F)). (7.48)
Then one has
m*w — xwy, € [7*w] — xc|(F). (7.49)
We consider
u :=rc*¢—x10g|sF|fl. (7.50)

Recall the Poincaré-Lelong formula
ddlog|sp|7 = [F]+ dd°logh, (7.51)
where [ F] is the integration current of F. Then one obtains
dd°u = 7*(dd°¢) + xw,,, on Y\F. (7.52)
It follows that
7w — xwp, + dd°u = 7¥(w + dd°¢), on Y\F. (7.53)

Since u is quasi-psh and bounded from above on Y\F, then u can be extended to a quasi-

psh function on Y, denoted by u’. Since
7' w — xwy, + dd°u’ € [#*w] — x¢,(F), (7.54)
by [75]Proposition 1.20 we have
((*a = x[FDP) = (7" @ — xw,, + dd°u")?)] (7.55)

in H”?(X,R), where (-) is the movable intersection and “ > " means that the difference
is pseudo-effective, i.e. having the non-negative intersection with all closed smooth semi-
positive form. Thus, we have
Vol(z*L — xF) ={((z*L — xF)")
=((z"a — x[F])")

\%

(r*w — xwy, + dd°u’)"
Jy

= (r*w — xwy, + dd°u)"
In\F

= ¥ (w + dd°¢)"
JY\F

_ n
| e, (7.56)
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where we used (7.55) for p = n. By nefness of #* H and (7.55) for p = n — 1, we obtain
(L =xF)"").H =((x*a - x[F])""")-z*0
> [((n*w — xy, + ddu’)"! )] -*0
=| (z*0 - xw), + ddu )" ATy
Jy
= (7*w — xewp, + dd°u)™ ' A z* y
Inr
= 7w+ dd¢)" P Aty
Inr
= a);_l AJx. (7.57)
Jx
We finish the proof. |

Note that (7.46) also holds for the nef line bundle H.

By (7.43), (7.45), and Claim 7.5, we have
J a)fl’,r = Vol(L — rF) (7.58)
X

forO<r<rt.

By (7.58), we can compute the Monge-Ampeére energy of the test curve y,.

(" \ \
Ew) ="+ 7J_m (L“’% - L‘” >‘“

+

;

=r++J lVOI(L—rF)—ldr

o V
+

,
=l J Vol(L — rF)dr
v

0
=S(F). (7.59)

By (7.46), we also obtain

+

,
Ex(y/):rJfl[ a)"_]/\;(+lJ' <J w”w_l/\;(—J a)"_l/\)(> dr
VIx Vile\lx ™ X

+

.
1 _

=r+,uH+J <—J a)”l/\;(—,uH>dr
o V X Wr

+

"1 e
<+ L (4L = PPy H = iy )
_l r+ _ n—1
=7 L (L=rF)""") Hdr
=Sy (F). (7.60)
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Recall the inverse Legendre transform,

¢, :=sup(y, +1tr), t=0. (7.61)

reR

Since y, is the T-model test curve, by Theorem 4.9, we know that ¢, is a maximal geodesic

ray. Moreover, by Theorem 4.8 and Theorem 4.10, we have

E'®(¢) = E(y) (7.62)
and
(E,)*(¢) =E,(y). (7.63)
Then we have
Ju(F) =Sy(F) —cS(F)
2E, () — cE(y)
=(E,)*(¢) — cE'*(¢) (7.64)

By Theorem 4.5, we denote @ by the corresponding non-Archimedean finite energy func-

tional of the maximal geodesic ray ¢. By Theorem 4.5 and Theorem 4.6, then we have
E'®($) = EN@), and (E,)*(@®)=(E")(¢). (7.65)

Thus, we obtain
in(F) 2 (EM) @) = cEM@) = Ty (). (7.66)

By Proposition 4.2 and 4.3, there exists a sequence ¢, in HNA(L) strongly converging to

@ such that
In' (@)= lim Tpi(@y). and  J¥(p) = lim J™ (). (7.67)
On the other hand, we have

INA (@) =ANA (@) — EN (o)

=sup ¢ — E(y,)
X‘dl’l
=7,(F) = S(F) = j(F). (7.68)

If we assume that (X, L) is uniformly J H _stable, together with the above argument, we

conclude
Ju(F) > lim Jp(ey)
>¢ lim INA@) = eV (@) = € (F). (7.69)
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Thus, we proved

Proposition 7.1. Uniform J-stability implies uniformly valuative J -stability. In
other word, if the polarized manifold (X, L) has a unique solution of the J-equation (7.18),
then

yp(L) > c. (7.70)

7.2.1 Deformation to the normal cone

In this subsection, we compute the functional .7 }I\IA for a special class of examples of
test configurations, the so-called deformation to the normal cone.

Let Z be an irreducible subvariety of X. Set
X:BIZX{O}(XA]) and [::p*L—P, <77l)

where P is the exceptional divisor. We have the following diagram

p

N

X b4 X[pl D1

N

We may assume that £ is ample. (X, L) is called the deformation to the normal cone

X . (7.72)

with respect to the subvariety Z. Let X be the strict transform of blow-up of X along Z

with the exceptional divisor E. Then
Xy =X Ug P. (7.73)
Set
L,:=L+sH,and L, := L+ sp*H. (7.74)

Take k, € Z. such that k L and k L are line bundles. In particular, k, = 1. One has

T
vaP 2 L)

_ 1 4 (L + sp*H)'!

- Vol(L)ds|,_, n+1

1 d Vol(k,L,) (k)"
Vol(L) ds|_q (n+ 1)k+! Vol(k L)

14l 1 A
- 4l Lo ) ENAx k. 775
Vol ds| . k. VOMEIE X, kL) (7.75)

s=0 s
For s € R small enough, (X, kL) 1s a ample test configuration of (X, k, L).

(ETYNA (X, £) =
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Set
R, :=@R,, =@ H'X,mk,L). (7.76)
m=0 m=0
We write
vp = r(ordp) = ordg. (7.77)

By Theorem 4.3, the associated filtration of the test configuration (X, k L) is de-
fined by

g’(f\?,kslis)RS,m ={f e R, | 14 p'f € HO(X’ mk L)}
={f €R,, |vp(f)+ mbl_,lordp(—ksP) > AUy (f)+02> 4}

={f € Ry, | vp(f) 2 mk; + 2,41 <0}

HO(X,mk L, — (mk,+ A)E) if1<0,

= (7.78)
0 if 4> 0.
We have
Amin = —kg, and A, =0. (7.79)
When s = 0, we obtain the associated filtration of (X, L)
i R HYX,L-(1+AME) ifi<0, (7.80)

(x,L)" m )
if A>0.

By theorem 4.2, then the Duistermaat-Heckman measure of (X, k L) is given by

1 d )
—__ 1 dygrD), 7.81
Y= “Voltk Ly dr | ORs ) (7.81)
where
) n! ..
Vol(Rgf)) 1= ,,}l_r,lgoﬁdlmg{(r;r,ksﬁs)l{s”' (7.82)

By Lemma 4.1, we have

ENAX, L) = ~ rdv(r)

= K ! Vol(R") — 1> dr

J_o \\Vol(L)

0

1
=] VO](L)VOI(L —(1+rE)dr-1
1 1

=VolD) L Vol(L — xE)dx — 1. (7.83)
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Similarly, we obtain

ENAX kL) =|  rdv(r)
J —00
~0 1
= —— VolR) - 1) ar
Joo \Vol(k, L,)
-0 1
=| ———— Vol(k,L, — (k, + P)E)dr — k
)_ Vol(k, L) Olks Ly = (ks + N E)dr
0
1
= Vol(L, — (1 + r/k )E)dr — k.. 7.84
V01(LS)J_kS ol(Ly — (1 +rlky)E)dr — kg ( )
Then, by (7.75), one has
H\NA 1 d 0 dr
E X, Vol(L, — (1 + rlk )E)<L — Vol(L
(B0 = | <Jk OI(L, = 1+ ik DEYE = Voll s>>
1 d !
= 4 Vol(L + sH — xE)dx — Vol(L
Vol(L) ds SZO(L OI(L + sH = xE)dx = Vol( S)>
1
n i
=" | «(L—=xE)"YY - Hdx — nu,,. 7.85
Vol(L) L« XEYT) - Hdx = nuy (7.85)
It follows that
NA 1 ( " —n> 1 <—n+l>
X, L H-L)-nyy——— (L
T (45 =30 "HH G Vol(L)

=(E"NAx, £) - cENA X, L)

1
n
~Vol(L) Vol(L) JO Vol(L — xE)dx. (7.86)

Proposition 7.2. Let (X, L) be a polarized variety and (X, £) be the deformation to the

J (L-xE)"'Y.-Hdx-c

normal cone with respect to a irreducible subvariety Z C X. As above notation, then we

have
NA n 1 :
X, L L—xE)"™)-Hdx— Vol(L —xE)dx, (7.87
MA@, L) = va“ REY™)- Hdx —eqi | Vol = xEydx, (787
where H is a ample line bundle on X and
. n—1
c=n&. (7.88)

Ln
Unfortunately, this can not imply slope J -stability since we can not deal with the

prime divisors F over X with 7, (F) > 1.

7.3 Upper bound of the volume

An interesting application of valuative criterion of Fano manifolds is to obtain the

volume upper bound of Fano manifolds, due to [51].
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In this section, as applications of valuative stability, we consider the volume upper
bound of polarized varieties. In particular, we obtain an upper bound of the volume for
K-semistable toric variety.

Proposition 7.3. Let (X, L) be a polarized variety of dimension n. Assume (X, L) is
valuatively semistable. Then we have
(i) if u(L) > 0, then

H(L)"VOI(L) < (n+ 1" (14 (u(L) = s(L)7 (F))"; (7.89)
(ii) if u(L) < 0, then
(—u(L))"Vol(L) < (1 + %)n (1-s(Lyr (F)", (7.90)

where F is an exceptional divisor of blow-up at a smooth point.

Remark 7.2. By definition of 7, ; (F), it is easy to see that
7. (F) =kt (F). (7.91)

From this, we note that inequality (7.89) and (7.90) are scaling invariant under the multiple

of L. Thus, we can assume a normalization condition of L as follows,

1 ifu(l)>0,
u(L) = (7.92)
-1 ifu(L)<0O.
Under the normalization condition, then the upper bound of volume in Proposition
7.3 becomes
Vol(L) < (n+ 1" (1 + (1 — s(L))7(F))" (7.93)
and
n
Vol(L) < <1 + l) (1- s(L)TL(F))n. (7.94)
n

In [51], the author gave an interesting lower bound of the volume of L — x F.
Lemma 7.2 ([51]7"€°®M 2:3) " Let X be an n-dimensional projective variety with n > 2,
let L be an ample Q-divisor on X, p € X be a smooth closed point, v : X — X be the

blowup at p, and F C X be the exceptional divisor of v. Then for any x € R, we have
Vol(L = xF) > (L —xF)") = (L") = x". (7.95)

Let F be the exceptional divisor of blowup at a smooth closed point, by Lemma 5.1
and (7.95), we have

n+1 1 ®
Fystt’ Vol(L — xF)d
) >= Vol(L)JO Ol(L = xF)dx
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n+1 1 [0
> Vol(L) — x")d
n Vol(L)JO (Vol(L) = xT)dx
n+ 1 I
> F)— "dx ) . 7.96
n (TL( )~ VoD L xax (7.96)
Thus, one has
1 1
— (P> F). 7.97
1 Vo) L) pr1 ) (7.97)
Then we obtain
7, (F) > v/Vol(L). (7.98)
It follows from (7.95) and (7.98) that
% Y/Vol(L)
J Vol(L — xF)dx ZJ (Vol(L) — x")dx
0 0
={/Vol(L)—2—Vol(L). (7.99)
n+1

Proof of Proposition 7.3 Let F be the exceptional divisor of blowup at a smooth closed

point. By the construction of blowup at a smooth closed point, then it is easy to compute
Ay(F)=n. (7.100)
(1) By (5.29), we have
Br(F) =Ax(F)Vol(L) + (nu(L) — (n + 1)s(L)S (F)

+o0

- J Vol (L = xF).(-s(L)L — Ky)dx

0

=nVol(L) + (n+ 1)(u(L) — s(L))S;(F)
+00

- u(L)S;(F)— J Vol (L — xF).(—=s(L)L — Ky)dx.  (7.101)
0

By the assumption, we obtain

nVol(L) + (n + D)(u(L) — s(L))S(F)
+00
>u(L)S; (F) + J Vol'(L — xF) (—s(L)L — Ky)dx
0

>u(L)S, (F), (7.102)

where we have used the definition of s(L) for the second inequality.
By (7.99) and u(L) > 0, we have

n

. 1Vol(L). (7.103)

nVol(L) + (n+ D)(u(L) = s(L)Sy(F) > u(L)y/ Vol(L)
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Thus, one has

u(L)\/Vol(L) < (n+1) <1 + (u(L) — s(L)) (7.104)

S (F)n+1
Vol(L)

By Lemma 5.1, we obtain
H(L)YVol(L) < (n + 1)(1 + (u(L) — s(L))7 (F)). (7.105)
(i1) Since f; = 0, by (5.29), we have

Ay (F)Vol(L) — (n+ 1)s(L)S (F)
+0o0

>(—nu(L))S (F) + J Vol'(L = xF).(=s(L)L — Ky)dx
0

2(=nu(L))S (F). (7.106)

By (7.99), Ay (F) = nand u(L) < 0, we obtain

Vol(L) - (1 + %)S(L)SL(F) > (—y(L))\"/Vol(L)n :l_ 1Vol(L). (7.107)
By Lemma 5.1, we have
(—=u(L)V/Vol(L) < (1 + %)(1 —s(L)z (F)) (7.108)

|
The upper bound in Proposition 7.3 is a coarse estimate. We will give a refined upper

bound for toric varieties later.

7.3.1  Upper bound of the volume of polarized toric varieties

The toric variety is a special class of examples to study K-stability and valuative
stability. In this subsection, we give a more precise upper bound of the volume on toric
variety. We follow the notation of [101].

Let X = X 5 be a n-dimensional projective normal toric variety associated to a fan
Y C Npg, where N is the lattice of all one-parameter subgroups of the torus T, ~ (C*)"
and the fan X in N := N ®5 R is a collection of cones such that each cone ¢ in X is
generated by finite many elements in N and ¢ N ¢’ € X for any two cones 6,6’ € 2.
We denote by M = N™ the lattice of characters of T, and X(1) the set of rays of the

fan X. Each ray p € 2(1) determines a prime divisor D, and an element u, € N,

p
namely the (unique) primitive vector in p N N. The ample line bundle corresponds to a
full dimensional lattice polytope P (uniquely determined by the linear equivalence of line
bundle up to a translation) whose fan is X.

Let L =) sex(1) 4,D, be a ample divisor. The lattice polytope P; associated to L
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is
Py ={me Mg | {m,u,) > —a,forall pe X(1)}. (7.109)
We improve the upper bound in Proposition 7.3 for the toric varieties.

Theorem 7.6. Let (X, L) be a polarized toric variety of dimension n. Assume (X, L) is

K-semistable. Then we have

{Vol(D) < maxa, (1 + —=u(Lyry (F)) (7.110)

where F is an exceptional divisor of blowup at a smooth point.
Remark 7.3. (i) Asin Remark 7.2, the upper bound (7.110) becomes

VVol(L) < maxa, (1 +—2—7.(F)) (7.111)

under the normalization condition u(L) = 1.

(1) For toric varieties, we have an explicit formula for 7; (F). Let ¢ = Cone(uy, -+, u,,)
be asmooth cone in X such that {u;}_, isabasisof N. We denote u := uj+---+u,.
Then u, corresponds to the valuation ordz. Due to Blum-Jonsson [95]C°rollary 7.7

one has

F)= ) — _ ) — min {v,uy),  (7.112
PP = Jpa (v 0) = W) = e, (o) = i (). (7112

where y is the support function of L and Vert(P) denotes the set of vertices of P.
Proof of Theorem 7.6 It is well known that K-semistability of (X, L) implies the orig-
inal Futaki invariant of (X, L) vanishes. By [34]T¢°*m 12 then (X, L) is valuative

semistable, i.e., for any toric prime divisor F over X, we have

+00 +00

Vol(L —xF)dx+J Vol'(L—xF) Kydx > 0.
0
(7.113)

We take F as the exceptional divisor of blowup at a smooth point, induced by u, :=

BL(F) := Ay(F)Vol(L)+npu(L) JO

u; + -+ +u,. One has
Ay(F)=1+-+1=n. (7.114)

Writing L = ¥ ,a,D,and Ky = — 3, D,. By (7.113), we have

+00
nVol(L) + nuS; (F) > nJ (L —xF)"™1Y (=K y)dx
0

+o0
= nJ ((L—xF)n_l>.(Z Dp)dx
0 P
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+o0
— h _ n—1
= e L (L — xF) )_(Zp:(mjlx a,)D,)dx
n +00
> J ((L —xF)" 1y Ldx
max, a, Jo
= ! (n+ I)J Vol(L — xF)dx.
max, a, 0
ntl Y/ Vol(L)
> J (Vol(L) — x")dx
max,a, Jo
—_ntl n -Vol(L){/Vol(L) = VVolh) ) Vol(L), (7.115)
max,a, n +1

where we have used a fact, which states ((L — xF )"‘1> intersecting with an effective

divisor is non-negative since it can be computed by restricted volume (see [71]Theorem By,

for the 4th inequality, (7.99) for the 6th inequality and Lemma 5.2 for the 5th equality.
Thus, we have

1/ Vol(L) <1

=+
max,a, = Vo l(L)

where we used (5.21). Now, we have shown (7.110). |

S,(F) < i (F). (7.116)

Remark 7.4. The inequality (7.110) is not invariant under translation. Indeed, if the
polytope P is translated to be P, := P + v, then L is invariant as a line bundle. It is easy
to that Vol(L), (L) and 7 (F) are invariant. But as a divisor, P, corresponds to its linear
equivalent divisor L,, := L + div(y"). Then the coefficient of L, is a, — (u,, v). Thus,

ma becomes max,(a, — (u,, U)).

Xpdp
Proposition 7.4. As the above Remark, then

P(v) 1= mjlx(ap — (u,, v)) (7.117)

1s bounded from below.
Proof. If v € P, then ¢p(v) has a lower bound since P is compact. If v & P, there exist

some p such that

(u,v) < —a,, (7.118)
1.e.,
a,—(u,v) > 2a,. (7.119)
We denote a oo - = min, a,. One has
d() > a, - (up, v) > 2a, > 2ap0. (7.120)
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This finishes the proof. i
Thus, we take the infimum in the R.H.S. of (7.110) to get a translation invariant upper
bound of the volume.

Example 7.1. We consider
P :={meR*(mu,)>-a, p=1234} (7.121)

We may assume that 0 < a; < a, < a3 < a4. Denote {v,v,,v3,0,} the vertices of P

and ¢; := v;v;,, the edges of P. By Proposition 7.4, we know
¢(v) > 2a,, forv & P. (7.122)
It is easy to see
¢(v) =2ay, forve £,n P.

Remark 7.5. When L = —K (toric Fano variety), Theorem 7.6 recovers the volume
inequality of the toric case in [50].

Indeed, in this case, we have max,a, = 1 and u = 1. We take valuation v = ordp,

p
then we have

1 <5(X)<’N0—1(L), (7.123)
SL(F)
1e.,
Sp(F)
7.124
vol() " (7.124)
By (7.116), we obtain
Vol(L) L (n+ 1)". (7.125)
From this, we also have
\/Vol(L
ol(L) <1+ n//l(L). (7.126)
max, a, o(L)

Remark 7.6. In the computation (the 5th equality) of the proof of Theorem 7.6, we have

aVol(L) + nuS, (F) > 215, (p), (7.127)
maxpap
1.e.,
n+1
nVol(L) > ( - n,u(L)> S, (F). (7.128)
maXp ap

When the coefficient of R.H.S. of (7.128) is positive (more general, non-negative), it is
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nothing but the Zhou-Zhu’s bound [102]Theorem 01

nu(L) < , for all p. (7.129)

a

p
Proposition 7.5. Let (X, L) be a polarized toric variety of dimension n. Assume (X, L)
is valuatively seimstable, then we have

n+1

maxp ap

o(L)+nu(L) — = 0. (7.130)

Proof. Let F be a toric prime divisor, we have

pr(F)=0. (7.131)

By a similar computation (7.128), one obtains

Ay (F)Vol(L) > < ntl _ nﬂ> S, (F), (7.132)
max, a,
1e.,
Ax(F)Vol(L
ntl o AxEVold) (7.133)
max, a, S (F)
By taking the infimum in the R.H.S., we have
ntl <L) (7.134)
max, a
p“p
[
We consider a function f : P; — R defined by
f(m) : _mlnf H(m), (7.135)

where £ ,(m) 1= a, + (m,u,) is the affine linear function.

Forany m € Mg, thenone has L ~ 3, £,(m)D,. Furthermore, L ~ ¥’ ¢,D,
if and only if there exists a m € Mp such that ¢ ) = =7 ,(m).
Proposition 7.6. Let (X, L) be a polarized toric variety of dimension n. If it satisfies

n+1
by
where b; :=maxp, f. Then (X, L) is valuatively semistable.

o(L)+nu(L) > ) (7.136)

Proof. Let F be any toric prime divisor over X. We may assume that 0 € P;. Then we

have
+00
pr(F)=Ax(F)Vol(L)+nu(L)S;(F)—n L (L - xF)”_1>,(2 Dp)dx
p

1

= Ax(FIVOI(L) + mu(1)S(F) = <

L (L= xFY~").(}, f(m)D )dx
p
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1 oo _
> Ay (F)Vol(L) + nu(L)S; (F) — " L (L =xF)" 1>.(Zp: Z,(m)D,)dx
= Ax(F)Vol(L) + nu(L)S, (F) - L5, (F)
f(m)
> (5(L) + (L) = 1 1) S, (F). (7.137)
Sf(m)

Thus, if

n+1
f(m)’

o(L)+nu(L) > (7.138)

then (X, L) is valuative semistable.
Note that
1) f(m)=0form € dP;;
i) f>0on P;
1ii) f is continuous.
Thus, there exists some point m, € lsL such that f(m,) = maxp f = by. By taking
m = my in (7.138), We finish the proof. |
Remark 7.7. (i) by is translation invariant.
(i1) Proposition 7.6 gives a sufficient condition of valuative semistability similar with
Zhou-Zhu [102]. By Dervan-Legendre [34]T¢0™™ 12 \e know that the condition
(7.136) implies Futaki invariant vanishing.

Lemma 7.3. Let (X, L) be a polarized toric variety of dimension n. It satisfies

sry>atl _ ntl (7.139)
min,a, max,a,
then (X, L) is valuatively semistable.
Proof. We divide into two cases.
(1) If
0<nu(L) < 1EL (7.140)
max, a,

By Zhou-Zhu’s result, (X, L) is K-stable, which implies that (X, L) is valuative

semistable.
(i) If
nu(L) > 11 (7.141)
max, a,
By assumption, it follows that
(L) > 2L s, (7.142)
min, a,

83



Chapter 7 Applications of valuative stability

By Proposition 7.6, then (X, L) is valuative semistable.

A natural question is what is happen when

0<s< Ll _ n+l (7.143)
mlnpap maxpap
and
ML < ML s, (7.144)
maXpap mlnpap
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(Calabi-Yau metric), and negative Kdhler-Einstein metrics by Shing-Tung Yau (1976),
the existence problems of positive Kéhler-Einstein metrics and constant scalar curvature
Kaéhler (cscK for short) metrics remained to be studied. In both cases there have been
known obstructions, and Yau conjectured that the existence should be equivalent to certain
stability condition in algebraic geometry. This conjecture is called the Yau conjecture.

This conjecture was confirmed for Fano manifolds, stating that the existence of
Kéhler-Einstein metrics is equivalent to K-polystability, in the papers published in 2015
by Chen-Donaldson-Sun (J. AMS) and Tian (Comm. Pure Appl. Math.). They used the
method of Kdhler-Einstein metrics with cone angle along divisors and Cheeger-Colding
theory on Gromov-Hausdorff convergence.

Later alternate proofs were given by Datar-Székelyhidi (2016 GAFA) using the con-
tinuity method of Yau, and by Chen-Sun-Wang (2018 Geom. Top.) using the K&hler-Ricci
flow. But the both works use Gromov-Hausdorff convegence, which can not be used for
the cscK case.

An alternate proof when the automorphism group is discrete was given by Berman-
Boucksom-Jonsson (2021 J.AMS) without using Gromov-Hausdorff convergence. In this
work, the stability condition is described in terms of non-Archimedean functionals, which
mean the invariants which describes the infinitesimal behavior at oo (i.e. slope) of the
relevant functionals (due to Mabuchi and Ding) along geodesics. Their result is referred
to as uniform K-stability. More recently, Chi Li modified the proof of Berman-Boucksom-
Jonsson to apply to the case when the automorphism group is not discrete (2022 Invent.
Math.). The result in this case is referred to as G-uniform stability. When G contains
the maximal torus of the automorphism group, G-uniform stability is equivalent to K-
polystability. This equivalence is non-trivial and follows from the work of Liu-Xu-Zhuang
(Preprint 2021 to appear in Ann. of Math.), which is described next.

So far the existence results were treated, but there were developments from other di-
rection, namely the problem of how to check the K-polystability and to apply to the moduli
problem of K-polystable Fano varieties, called the K-moduli. This development uses the

recent development of the Minimal Model Program. This connection was first pointed out
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of Liu-Xu-Zhuang gives a final result to assure that the K-moduli of K-polystable Fano
varieties are algebraic. It should also be mentioned that K. Fujita (2019 J. Reine Angew.
Math.) and C. Li (2017 Duke Math.) gave a criterion called the valuative criterion for
K-stability and Fujita-Odaka formulated §-invariant to check K-stability. These works
played the key role to apply birational geometry. More recently, Kewei Zhang defined
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Mathematical Society).
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model program this valuative stability for cscK metrics only gives a necessary condition
for the existence. The present thesis by Yaxiong Liu proves the openness of the uniform
valuative stability in the ample cone. Further he found two applications of this result. One
is the valuative criterion for the existence of J-equation where the J-equation has been
considered by Donaldson and studied extensively by many mathematicians. Another is
the upper bound of polarized toric varieties. These results of Yaxiong Liu go along the
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research.
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